Skip to content

Commit c7315ec

Browse files
committed
Correct extra url, expand Pochhammer examples
1 parent e0b4df8 commit c7315ec

File tree

2 files changed

+51
-12
lines changed

2 files changed

+51
-12
lines changed

mathics/builtin/specialfns/elliptic.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,6 @@ class EllipticPi(SympyFunction):
175175
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.elliptic_integrals.elliptic_pi</url>, <url>
176176
:WMA:
177177
https://reference.wolfram.com/language/ref/EllipticPi.html</url>)
178-
<url>
179178
180179
<dl>
181180
<dt>'EllipticPi[$n$, $m$]'

mathics/builtin/specialfns/gamma.py

Lines changed: 51 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -408,22 +408,53 @@ def get_sympy_names(self):
408408

409409
class Pochhammer(SympyFunction):
410410
"""
411-
<url>:WMA link:https://reference.wolfram.com/language/ref/Pochhammer.html</url>
411+
<url>:Rising factorial:
412+
https://en.wikipedia.org/wiki/Falling_and_rising_factorials</url> (<url>
413+
:SymPy:
414+
https://docs.sympy.org/latest/modules/functions/combinatorial.html#risingfactorial</url>, <url>
415+
:WMA:
416+
https://reference.wolfram.com/language/ref/Pochhammer.html</url>)
417+
418+
The Pochhammer symbol or rising factorial often appears in series \
419+
expansions for hypergeometric functions.
412420
413-
The Pochhammer symbol or rising factorial often appears in series expansions for hypergeometric functions.
414-
The Pochammer symbol has a definie value even when the gamma functions which appear in its definition are infinite.
421+
The Pochammer symbol has a definite value even when the gamma \
422+
functions which appear in its definition are infinite.
415423
<dl>
416424
<dt>'Pochhammer[$a$, $n$]'
417-
<dd>is the Pochhammer symbol (a)_n.
425+
<dd>is the Pochhammer symbol $a_n$.
418426
</dl>
419427
420-
>> Pochhammer[4, 8]
421-
= 6652800
428+
Product of the first 3 numbers:
429+
>> Pochhammer[1, 3]
430+
= 6
431+
432+
'Pochhammer[1, $n$]' is \
433+
the same as Pochhammer[2, $n$-1] since 1 is a multiplicative identity.
434+
435+
>> Pochhammer[1, 3] == Pochhammer[2, 2]
436+
= True
437+
438+
Although sometimes 'Pochhammer[0, $n$]' is taken to be 1, in Mathics it is 0:
439+
>> Pochhammer[0, n]
440+
= 0
441+
442+
Pochhammer uses Gamma for non-Integer values of $n$:
443+
444+
>> Pochhammer[1, 3.001]
445+
= 6.00754
446+
447+
>> Pochhammer[1, 3.001] == Pochhammer[2, 2.001]
448+
= True
449+
450+
>> Pochhammer[1.001, 3] == 1.001 2.001 3.001
451+
= True
422452
"""
423453

424454
attributes = A_LISTABLE | A_NUMERIC_FUNCTION | A_PROTECTED
425455

426456
rules = {
457+
"Pochhammer[0, n_]": "0", # Wikipedia says it should be 1 though.
427458
"Pochhammer[a_, n_]": "Gamma[a + n] / Gamma[a]",
428459
"Derivative[1,0][Pochhammer]": "(Pochhammer[#1, #2]*(-PolyGamma[0, #1] + PolyGamma[0, #1 + #2]))&",
429460
"Derivative[0,1][Pochhammer]": "(Pochhammer[#1, #2]*PolyGamma[0, #1 + #2])&",
@@ -434,7 +465,12 @@ class Pochhammer(SympyFunction):
434465

435466
class PolyGamma(_MPMathMultiFunction):
436467
r"""
437-
<url>:WMA link:https://reference.wolfram.com/language/ref/PolyGamma.html</url>
468+
<url>:Polygamma function:
469+
https://en.wikipedia.org/wiki/Polygamma_function</url> (<url>
470+
:SymPy:
471+
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.gamma_functions.polygamma</url>, <url>
472+
:WMA:
473+
https://reference.wolfram.com/language/ref/PolyGamma.html</url>)
438474
439475
PolyGamma is a meromorphic function on the complex numbers and is defined as a derivative of the logarithm of the gamma function.
440476
<dl>
@@ -470,13 +506,17 @@ class PolyGamma(_MPMathMultiFunction):
470506

471507

472508
class StieltjesGamma(SympyFunction):
473-
r"""
474-
<url>:WMA link:https://reference.wolfram.com/language/ref/StieltjesGamma.html</url>
509+
"""
510+
<url>:Stieltjes constants:
511+
https://en.wikipedia.org/wiki/Stieltjes_constants</url> (<url>
512+
:SymPy:
513+
https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.zeta_functions.stieltjes</url>, <url>
514+
:WMA:
515+
https://reference.wolfram.com/language/ref/StieltjesGamma.html</url>)
475516
476-
PolyGamma is a meromorphic function on the complex numbers and is defined as a derivative of the logarithm of the gamma function.
477517
<dl>
478518
<dt>'StieltjesGamma[$n$]'
479-
<dd>returns the Stieljs contstant for $n$.
519+
<dd>returns the Stieltjes constant for $n$.
480520
481521
<dt>'StieltjesGamma[$n$, $a$]'
482522
<dd>gives the generalized Stieltjes constant of its parameters

0 commit comments

Comments
 (0)