@@ -359,7 +359,7 @@ def fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', alpha=0.5,
359359 .. math::
360360 \gamma = arg\min_\gamma (1-\a lpha)*<\gamma,M>_F + \a lpha* \sum_{i,j,k,l}
361361 L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}
362-
362+
363363 s.t. \gamma 1 = p
364364 \gamma^T 1= q
365365 \gamma\geq 0
@@ -414,7 +414,7 @@ def fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', alpha=0.5,
414414 and Courty Nicolas "Optimal Transport for structured data with
415415 application on graphs", International Conference on Machine Learning
416416 (ICML). 2019.
417-
417+
418418 """
419419
420420 constC , hC1 , hC2 = init_matrix (C1 , C2 , p , q , loss_fun )
@@ -442,7 +442,7 @@ def fused_gromov_wasserstein2(M, C1, C2, p, q, loss_fun='square_loss', alpha=0.5
442442 .. math::
443443 \min_\gamma (1-\a lpha)*<\gamma,M>_F + \a lpha* \sum_{i,j,k,l}
444444 L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}
445-
445+
446446
447447 s.t. \gamma 1 = p
448448 \gamma^T 1= q
@@ -647,7 +647,7 @@ def entropic_gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon,
647647 Returns
648648 -------
649649 T : ndarray, shape (ns, nt)
650- Optimal coupling between the two spaces
650+ Optimal coupling between the two spaces
651651
652652 References
653653 ----------
@@ -1024,7 +1024,7 @@ def fgw_barycenters(N, Ys, Cs, ps, lambdas, alpha, fixed_structure=False, fixed_
10241024 T : list of (N,ns) transport matrices
10251025 Ms : all distance matrices between the feature of the barycenter and the
10261026 other features dist(X,Ys) shape (N,ns)
1027-
1027+
10281028 References
10291029 ----------
10301030 .. [24] Vayer Titouan, Chapel Laetitia, Flamary R{\' e}mi, Tavenard Romain
0 commit comments