@@ -35,6 +35,7 @@ It provides the following solvers:
3535- Stochastic Optimization for Large-scale Optimal Transport (semi-dual
3636 problem [18] and dual problem [19])
3737- Non regularized free support Wasserstein barycenters [20].
38+ - Unbalanced OT with KL relaxation distance and barycenter [10, 25].
3839
3940Some demonstrations (both in Python and Jupyter Notebook format) are
4041available in the examples folder.
@@ -69,6 +70,13 @@ modules:
6970Pip installation
7071^^^^^^^^^^^^^^^^
7172
73+ Note that due to a limitation of pip, ``cython `` and ``numpy `` need to
74+ be installed prior to installing POT. This can be done easily with
75+
76+ ::
77+
78+ pip install numpy cython
79+
7280You can install the toolbox through PyPI with:
7381
7482::
@@ -229,6 +237,8 @@ The contributors to this library are
229237- `Alain
230238 Rakotomamonjy <https://sites.google.com/site/alainrakotomamonjy/home> `__
231239- `Vayer Titouan <https://tvayer.github.io/ >`__
240+ - `Hicham Janati <https://hichamjanati.github.io/ >`__ (Unbalanced OT)
241+ - `Romain Tavenard <https://rtavenar.github.io/ >`__ (1d Wasserstein)
232242
233243This toolbox benefit a lot from open source research and we would like
234244to thank the following persons for providing some code (in various
@@ -379,6 +389,10 @@ and Statistics, (AISTATS) 21, 2018
379389graphs <http://proceedings.mlr.press/v97/titouan19a.html> `__ Proceedings
380390of the 36th International Conference on Machine Learning (ICML).
381391
392+ [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. (2019).
393+ `Learning with a Wasserstein Loss <http://cbcl.mit.edu/wasserstein/ >`__
394+ Advances in Neural Information Processing Systems (NIPS).
395+
382396.. |PyPI version | image :: https://badge.fury.io/py/POT.svg
383397 :target: https://badge.fury.io/py/POT
384398.. |Anaconda Cloud | image :: https://anaconda.org/conda-forge/pot/badges/version.svg
0 commit comments