@@ -702,7 +702,7 @@ def entropic_partial_wasserstein(a, b, M, reg, m=None, numItermax=1000,
702702 - a and b are the sample weights
703703 - m is the amount of mass to be transported
704704
705- The formulation of the problem has been proposed in [3]_
705+ The formulation of the problem has been proposed in [3]_ (prop. 5)
706706
707707
708708 Parameters
@@ -843,7 +843,8 @@ def entropic_partial_gromov_wasserstein(C1, C2, p, q, reg, m=None, G0=None,
843843 :math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
844844 - m is the amount of mass to be transported
845845
846- The formulation of the problem has been proposed in [12].
846+ The formulation of the GW problem has been proposed in [12]_ and the
847+ partial GW in [29]_.
847848
848849 Parameters
849850 ----------
@@ -903,6 +904,9 @@ def entropic_partial_gromov_wasserstein(C1, C2, p, q, reg, m=None, G0=None,
903904 .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon,
904905 "Gromov-Wasserstein averaging of kernel and distance matrices."
905906 International Conference on Machine Learning (ICML). 2016.
907+ .. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
908+ Wasserstein with Applications on Positive-Unlabeled Learning".
909+ arXiv preprint arXiv:2002.08276.
906910
907911 See Also
908912 --------
@@ -979,7 +983,8 @@ def entropic_partial_gromov_wasserstein2(C1, C2, p, q, reg, m=None, G0=None,
979983 :math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
980984 - m is the amount of mass to be transported
981985
982- The formulation of the problem has been proposed in [12].
986+ The formulation of the GW problem has been proposed in [12]_ and the
987+ partial GW in [29]_.
983988
984989
985990 Parameters
@@ -1033,6 +1038,9 @@ def entropic_partial_gromov_wasserstein2(C1, C2, p, q, reg, m=None, G0=None,
10331038 .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon,
10341039 "Gromov-Wasserstein averaging of kernel and distance matrices."
10351040 International Conference on Machine Learning (ICML). 2016.
1041+ .. [29] Chapel, L., Alaya, M., Gasso, G. (2019). "Partial Gromov-
1042+ Wasserstein with Applications on Positive-Unlabeled Learning".
1043+ arXiv preprint arXiv:2002.08276.
10361044 """
10371045
10381046 partial_gw , log_gw = entropic_partial_gromov_wasserstein (C1 , C2 , p , q , reg ,
0 commit comments