Skip to content

Commit 6a02db0

Browse files
committed
test_optim
1 parent 2bc41ad commit 6a02db0

File tree

1 file changed

+10
-12
lines changed

1 file changed

+10
-12
lines changed

test/test_optim.py

Lines changed: 10 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -3,22 +3,20 @@
33
import ot
44

55

6-
# import pytest
7-
86

97
def test_conditional_gradient():
108

11-
n = 100 # nb bins
9+
n_bins = 100 # nb bins
1210
np.random.seed(0)
1311
# bin positions
14-
x = np.arange(n, dtype=np.float64)
12+
x = np.arange(n_bins, dtype=np.float64)
1513

1614
# Gaussian distributions
17-
a = ot.datasets.get_1D_gauss(n, m=20, s=5) # m= mean, s= std
18-
b = ot.datasets.get_1D_gauss(n, m=60, s=10)
15+
a = ot.datasets.get_1D_gauss(n_bins, m=20, s=5) # m= mean, s= std
16+
b = ot.datasets.get_1D_gauss(n_bins, m=60, s=10)
1917

2018
# loss matrix
21-
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
19+
M = ot.dist(x.reshape((n_bins, 1)), x.reshape((n_bins, 1)))
2220
M /= M.max()
2321

2422
def f(G):
@@ -37,17 +35,17 @@ def df(G):
3735

3836
def test_generalized_conditional_gradient():
3937

40-
n = 100 # nb bins
38+
n_bins = 100 # nb bins
4139
np.random.seed(0)
4240
# bin positions
43-
x = np.arange(n, dtype=np.float64)
41+
x = np.arange(n_bins, dtype=np.float64)
4442

4543
# Gaussian distributions
46-
a = ot.datasets.get_1D_gauss(n, m=20, s=5) # m= mean, s= std
47-
b = ot.datasets.get_1D_gauss(n, m=60, s=10)
44+
a = ot.datasets.get_1D_gauss(n_bins, m=20, s=5) # m= mean, s= std
45+
b = ot.datasets.get_1D_gauss(n_bins, m=60, s=10)
4846

4947
# loss matrix
50-
M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
48+
M = ot.dist(x.reshape((n_bins, 1)), x.reshape((n_bins, 1)))
5149
M /= M.max()
5250

5351
def f(G):

0 commit comments

Comments
 (0)