|
1 | | -# POT: Python Optimal Transport |
2 | | - |
3 | | -import ot |
4 | | -[](https: // badge.fury.io / py / POT) |
5 | | -[](https: // anaconda.org / conda - forge / pot) |
6 | | -[](https: // travis - ci.org / rflamary / POT) |
7 | | -[](http: // pot.readthedocs.io / en / latest /?badge=latest) |
8 | | -[](https: // pepy.tech / project / pot) |
9 | | -[](https: // anaconda.org / conda - forge / pot) |
10 | | -[](https: // github.com / rflamary / POT / blob / master / LICENSE) |
11 | | - |
12 | | - |
13 | | -This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. |
14 | | - |
15 | | -It provides the following solvers: |
16 | | - |
17 | | -* OT Network Flow solver for the linear program / Earth Movers Distance[1]. |
18 | | -* Entropic regularization OT solver with Sinkhorn Knopp Algorithm[2], stabilized version[9][10] and greedy Sinkhorn[22] with optional GPU implementation(requires cupy). |
19 | | -* Sinkhorn divergence[23] and entropic regularization OT from empirical data. |
20 | | -* Smooth optimal transport solvers(dual and semi - dual) for KL and squared L2 regularizations[17]. |
21 | | -* Non regularized Wasserstein barycenters[16] with LP solver(only small scale). |
22 | | -* Bregman projections for Wasserstein barycenter[3], convolutional barycenter[21] and unmixing[4]. |
23 | | -* Optimal transport for domain adaptation with group lasso regularization[5] |
24 | | -* Conditional gradient[6] and Generalized conditional gradient for regularized OT[7]. |
25 | | -* Linear OT[14] and Joint OT matrix and mapping estimation[8]. |
26 | | -* Wasserstein Discriminant Analysis[11](requires autograd + pymanopt). |
27 | | -* Gromov - Wasserstein distances and barycenters([13] and regularized[12]) |
28 | | -* Stochastic Optimization for Large - scale Optimal Transport(semi - dual problem[18] and dual problem[19]) |
29 | | -* Non regularized free support Wasserstein barycenters[20]. |
30 | | -* Unbalanced OT with KL relaxation distance and barycenter[10, 25]. |
31 | | -* Screening Sinkhorn Algorithm for OT[26]. |
32 | | -* JCPOT algorithm for multi - source domain adaptation with target shift[27]. |
33 | | -* Partial Wasserstein and Gromov - Wasserstein(exact[29] and entropic[3] formulations). |
34 | | - |
35 | | -Some demonstrations(both in Python and Jupyter Notebook format) are available in the examples folder. |
36 | | - |
37 | | -#### Using and citing the toolbox |
38 | | - |
39 | | -If you use this toolbox in your research and find it useful, please cite POT using the following bibtex reference: |
40 | | -``` |
41 | | -
|
42 | | -
|
43 | | -@misc{flamary2017pot, |
44 | | - title = {POT Python Optimal Transport library}, |
45 | | - author = {Flamary, R{'e}mi and Courty, Nicolas}, |
46 | | - url = {https: // github.com / rflamary / POT}, |
47 | | - year = {2017} |
48 | | - } |
49 | | -``` |
50 | | - |
51 | | -## Installation |
52 | | - |
53 | | -The library has been tested on Linux, MacOSX and Windows. It requires a C + + compiler for building / installing the EMD solver and relies on the following Python modules: |
54 | | - |
55 | | -- Numpy ( >= 1.11) |
56 | | -- Scipy ( >= 1.0) |
57 | | -- Cython ( >= 0.23) |
58 | | -- Matplotlib ( >= 1.5) |
59 | | - |
60 | | -#### Pip installation |
61 | | - |
62 | | -Note that due to a limitation of pip, `cython` and `numpy` need to be installed |
63 | | -prior to installing POT. This can be done easily with |
64 | | -``` |
65 | | -pip install numpy cython |
66 | | -``` |
67 | | - |
68 | | -You can install the toolbox through PyPI with: |
69 | | -``` |
70 | | -pip install POT |
71 | | -``` |
72 | | -or get the very latest version by downloading it and then running: |
73 | | -``` |
74 | | -python setup.py install - -user # for user install (no root) |
75 | | -``` |
76 | | - |
77 | | - |
78 | | -#### Anaconda installation with conda-forge |
79 | | - |
80 | | -If you use the Anaconda python distribution, POT is available in [conda - forge](https: // conda - forge.org). To install it and the required dependencies: |
81 | | -``` |
82 | | -conda install - c conda - forge pot |
83 | | -``` |
84 | | - |
85 | | -#### Post installation check |
86 | | -After a correct installation, you should be able to import the module without errors: |
87 | | -```python |
88 | | -``` |
89 | | -Note that for easier access the module is name ot instead of pot. |
90 | | - |
91 | | - |
92 | | -### Dependencies |
93 | | - |
94 | | -Some sub - modules require additional dependences which are discussed below |
95 | | - |
96 | | -* **ot.dr ** (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with: |
97 | | -``` |
98 | | -pip install pymanopt autograd |
99 | | -``` |
100 | | -* **ot.gpu ** (GPU accelerated OT) depends on cupy that have to be installed following instructions on[this page](https: // docs - cupy.chainer.org / en / stable / install.html). |
101 | | - |
102 | | - |
103 | | -obviously you need CUDA installed and a compatible GPU. |
104 | | - |
105 | | -## Examples |
106 | | - |
107 | | -### Short examples |
108 | | - |
109 | | -* Import the toolbox |
110 | | -```python |
111 | | -``` |
112 | | -* Compute Wasserstein distances |
113 | | -```python |
114 | | -# a,b are 1D histograms (sum to 1 and positive) |
115 | | -# M is the ground cost matrix |
116 | | -Wd = ot.emd2(a, b, M) # exact linear program |
117 | | -Wd_reg = ot.sinkhorn2(a, b, M, reg) # entropic regularized OT |
118 | | -# if b is a matrix compute all distances to a and return a vector |
119 | | -``` |
120 | | -* Compute OT matrix |
121 | | -```python |
122 | | -# a,b are 1D histograms (sum to 1 and positive) |
123 | | -# M is the ground cost matrix |
124 | | -T = ot.emd(a, b, M) # exact linear program |
125 | | -T_reg = ot.sinkhorn(a, b, M, reg) # entropic regularized OT |
126 | | -``` |
127 | | -* Compute Wasserstein barycenter |
128 | | -```python |
129 | | -# A is a n*d matrix containing d 1D histograms |
130 | | -# M is the ground cost matrix |
131 | | -ba = ot.barycenter(A, M, reg) # reg is regularization parameter |
132 | | -``` |
133 | | - |
134 | | - |
135 | | -### Examples and Notebooks |
136 | | - |
137 | | -The examples folder contain several examples and use case for the library. The full documentation is available on [Readthedocs](http: // pot.readthedocs.io / ). |
138 | | - |
139 | | - |
140 | | -Here is a list of the Python notebooks available [here](https: // github.com / rflamary / POT / blob / master / notebooks / ) if you want a quick look: |
141 | | - |
142 | | -* [1D optimal transport](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_1D.ipynb) |
143 | | -* [OT Ground Loss](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_L1_vs_L2.ipynb) |
144 | | -* [Multiple EMD computation](https: // github.com / rflamary / POT / blob / master / notebooks / plot_compute_emd.ipynb) |
145 | | -* [2D optimal transport on empirical distributions](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_2D_samples.ipynb) |
146 | | -* [1D Wasserstein barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_barycenter_1D.ipynb) |
147 | | -* [OT with user provided regularization](https: // github.com / rflamary / POT / blob / master / notebooks / plot_optim_OTreg.ipynb) |
148 | | -* [Domain adaptation with optimal transport](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_d2.ipynb) |
149 | | -* [Color transfer in images](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_color_images.ipynb) |
150 | | -* [OT mapping estimation for domain adaptation](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_mapping.ipynb) |
151 | | -* [OT mapping estimation for color transfer in images](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_mapping_colors_images.ipynb) |
152 | | -* [Wasserstein Discriminant Analysis](https: // github.com / rflamary / POT / blob / master / notebooks / plot_WDA.ipynb) |
153 | | -* [Gromov Wasserstein](https: // github.com / rflamary / POT / blob / master / notebooks / plot_gromov.ipynb) |
154 | | -* [Gromov Wasserstein Barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_gromov_barycenter.ipynb) |
155 | | -* [Fused Gromov Wasserstein](https: // github.com / rflamary / POT / blob / master / notebooks / plot_fgw.ipynb) |
156 | | -* [Fused Gromov Wasserstein Barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_barycenter_fgw.ipynb) |
157 | | - |
158 | | - |
159 | | -You can also see the notebooks with [Jupyter nbviewer](https: // nbviewer.jupyter.org / github / rflamary / POT / tree / master / notebooks / ). |
160 | | - |
161 | | -## Acknowledgements |
162 | | - |
163 | | -This toolbox has been created and is maintained by |
164 | | - |
165 | | -* [Rémi Flamary](http: // remi.flamary.com / ) |
166 | | -* [Nicolas Courty](http: // people.irisa.fr / Nicolas.Courty / ) |
167 | | - |
168 | | -The contributors to this library are |
169 | | - |
170 | | -* [Alexandre Gramfort](http: // alexandre.gramfort.net / ) |
171 | | -* [Laetitia Chapel](http: // people.irisa.fr / Laetitia.Chapel / ) |
172 | | -* [Michael Perrot](http: // perso.univ - st - etienne.fr / pem82055 / ) (Mapping estimation) |
173 | | -* [Léo Gautheron](https: // github.com / aje)(GPU implementation) |
174 | | -* [Nathalie Gayraud](https: // www.linkedin.com / in / nathalie - t - h - gayraud /?ppe=1) |
175 | | -* [Stanislas Chambon](https: // slasnista.github.io / ) |
176 | | -* [Antoine Rolet](https: // arolet.github.io / ) |
177 | | -* Erwan Vautier(Gromov - Wasserstein) |
178 | | -* [Kilian Fatras](https: // kilianfatras.github.io / ) |
179 | | -* [Alain Rakotomamonjy](https: // sites.google.com / site / alainrakotomamonjy / home) |
180 | | -* [Vayer Titouan](https: // tvayer.github.io / ) |
181 | | -* [Hicham Janati](https: // hichamjanati.github.io / ) (Unbalanced OT) |
182 | | -* [Romain Tavenard](https: // rtavenar.github.io / ) (1d Wasserstein) |
183 | | -* [Mokhtar Z. Alaya](http: // mzalaya.github.io / ) (Screenkhorn) |
184 | | - |
185 | | -This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code(in various languages): |
186 | | - |
187 | | -* [Gabriel Peyré](http: // gpeyre.github.io / ) (Wasserstein Barycenters in Matlab) |
188 | | -* [Nicolas Bonneel](http: // liris.cnrs.fr / ~nbonneel /) (C++ code for EMD) |
189 | | -* [Marco Cuturi](http: // marcocuturi.net / ) (Sinkhorn Knopp in Matlab/Cuda) |
190 | | - |
191 | | - |
192 | | -## Contributions and code of conduct |
193 | | - |
194 | | -Every contribution is welcome and should respect the[contribution guidelines](CONTRIBUTING.md). Each member of the project is expected to follow the[code of conduct](CODE_OF_CONDUCT.md). |
195 | | - |
196 | | -## Support |
197 | | - |
198 | | -You can ask questions and join the development discussion: |
199 | | - |
200 | | -* On the[POT Slack channel](https: // pot - toolbox.slack.com) |
201 | | -* On the POT [mailing list](https: // mail.python.org / mm3 / mailman3 / lists / pot.python.org / ) |
202 | | - |
203 | | - |
204 | | -You can also post bug reports and feature requests in Github issues. Make sure to read our[guidelines](CONTRIBUTING.md) first. |
205 | | - |
206 | | -## References |
207 | | - |
208 | | -[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). [Displacement interpolation using Lagrangian mass transport](https: // people.csail.mit.edu / sparis / publi / 2011 / sigasia / Bonneel_11_Displacement_Interpolation.pdf). In ACM Transactions on Graphics(TOG)(Vol. 30, No. 6, p. 158). ACM. |
209 | | - |
210 | | -[2] Cuturi, M. (2013). [Sinkhorn distances: Lightspeed computation of optimal transport](https: // arxiv.org / pdf / 1306.0895.pdf). In Advances in Neural Information Processing Systems(pp. 2292 - 2300). |
211 | | - |
212 | | -[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). [Iterative Bregman projections for regularized transportation problems](https: // arxiv.org / pdf / 1412.5154.pdf). SIAM Journal on Scientific Computing, 37(2), A1111 - A1138. |
213 | | - |
214 | | -[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, [Supervised planetary unmixing with optimal transport](https: // hal.archives - ouvertes.fr / hal - 01377236 / document), Whorkshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing(WHISPERS), 2016. |
215 | | - |
216 | | -[5] N. Courty |
217 | | -R. Flamary |
218 | | -D. Tuia |
219 | | -A. Rakotomamonjy, [Optimal Transport for Domain Adaptation](https: // arxiv.org / pdf / 1507.00504.pdf), in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PP, no.99, pp.1 - 1 |
220 | | - |
221 | | -[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). [Regularized discrete optimal transport](https: // arxiv.org / pdf / 1307.5551.pdf). SIAM Journal on Imaging Sciences, 7(3), 1853 - 1882. |
222 | | - |
223 | | -[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). [Generalized conditional gradient: analysis of convergence and applications](https: // arxiv.org / pdf / 1510.06567.pdf). arXiv preprint arXiv: 1510.06567. |
224 | | - |
225 | | -[8] M. Perrot, N. Courty, R. Flamary, A. Habrard(2016), [Mapping estimation for discrete optimal transport](http: // remi.flamary.com / biblio / perrot2016mapping.pdf), Neural Information Processing Systems(NIPS). |
226 | | - |
227 | | -[9] Schmitzer, B. (2016). [Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems](https: // arxiv.org / pdf / 1610.06519.pdf). arXiv preprint arXiv: 1610.06519. |
228 | | - |
229 | | -[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). [Scaling algorithms for unbalanced transport problems](https: // arxiv.org / pdf / 1607.05816.pdf). arXiv preprint arXiv: 1607.05816. |
230 | | - |
231 | | -[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). [Wasserstein Discriminant Analysis](https: // arxiv.org / pdf / 1608.08063.pdf). arXiv preprint arXiv: 1608.08063. |
232 | | - |
233 | | -[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon(2016), [Gromov - Wasserstein averaging of kernel and distance matrices](http: // proceedings.mlr.press / v48 / peyre16.html) International Conference on Machine Learning(ICML). |
234 | | - |
235 | | -[13] Mémoli, Facundo(2011). [Gromov–Wasserstein distances and the metric approach to object matching](https: // media.adelaide.edu.au / acvt / Publications / 2011 / 2011 - Gromov % E2 % 80 % 93Wasserstein % 20Distances % 20and % 20the % 20Metric % 20Approach % 20to % 20Object % 20Matching.pdf). Foundations of computational mathematics 11.4: 417 - 487. |
236 | | - |
237 | | -[14] Knott, M. and Smith, C. S. (1984).[On the optimal mapping of distributions](https: // link.springer.com / article / 10.1007 / BF00934745), Journal of Optimization Theory and Applications Vol 43. |
238 | | - |
239 | | -[15] Peyré, G., & Cuturi, M. (2018). [Computational Optimal Transport](https: // arxiv.org / pdf / 1803.00567.pdf) . |
240 | | - |
241 | | -[16] Agueh, M., & Carlier, G. (2011). [Barycenters in the Wasserstein space](https: // hal.archives - ouvertes.fr / hal - 00637399 / document). SIAM Journal on Mathematical Analysis, 43(2), 904 - 924. |
242 | | - |
243 | | -[17] Blondel, M., Seguy, V., & Rolet, A. (2018). [Smooth and Sparse Optimal Transport](https: // arxiv.org / abs / 1710.06276). Proceedings of the Twenty - First International Conference on Artificial Intelligence and Statistics(AISTATS). |
244 | | - |
245 | | -[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016)[Stochastic Optimization for Large - scale Optimal Transport](https: // arxiv.org / abs / 1605.08527). Advances in Neural Information Processing Systems(2016). |
246 | | - |
247 | | -[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A. & Blondel, M. [Large - scale Optimal Transport and Mapping Estimation](https: // arxiv.org / pdf / 1711.02283.pdf). International Conference on Learning Representation(2018) |
248 | | - |
249 | | -[20] Cuturi, M. and Doucet, A. (2014)[Fast Computation of Wasserstein Barycenters](http: // proceedings.mlr.press / v32 / cuturi14.html). International Conference in Machine Learning |
250 | | - |
251 | | -[21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). [Convolutional wasserstein distances: Efficient optimal transportation on geometric domains](https: // dl.acm.org / citation.cfm?id=2766963). ACM Transactions on Graphics(TOG), 34(4), 66. |
252 | | - |
253 | | -[22] J. Altschuler, J.Weed, P. Rigollet, (2017)[Near - linear time approximation algorithms for optimal transport via Sinkhorn iteration](https: // papers.nips.cc / paper / 6792 - near - linear - time - approximation - algorithms - for-optimal - transport - via - sinkhorn - iteration.pdf), Advances in Neural Information Processing Systems(NIPS) 31 |
254 | | - |
255 | | -[23] Aude, G., Peyré, G., Cuturi, M., [Learning Generative Models with Sinkhorn Divergences](https: // arxiv.org / abs / 1706.00292), Proceedings of the Twenty - First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018 |
256 | | - |
257 | | -[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). [Optimal Transport for structured data with application on graphs](http: // proceedings.mlr.press / v97 / titouan19a.html) Proceedings of the 36th International Conference on Machine Learning(ICML). |
258 | | - |
259 | | -[25] Frogner C., Zhang C., Mobahi H., Araya - Polo M., Poggio T. (2015). [Learning with a Wasserstein Loss](http: // cbcl.mit.edu / wasserstein / ) Advances in Neural Information Processing Systems (NIPS). |
260 | | - |
261 | | -[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019). [Screening Sinkhorn Algorithm for Regularized Optimal Transport](https: // papers.nips.cc / paper / 9386 - screening - sinkhorn - algorithm - for-regularized - optimal - transport), Advances in Neural Information Processing Systems 33 (NeurIPS). |
262 | | - |
263 | | -[27] Redko I., Courty N., Flamary R., Tuia D. (2019). [Optimal Transport for Multi - source Domain Adaptation under Target Shift](http: // proceedings.mlr.press / v89 / redko19a.html), Proceedings of the Twenty - Second International Conference on Artificial Intelligence and Statistics(AISTATS) 22, 2019. |
264 | | - |
265 | | -[28] Caffarelli, L. A., McCann, R. J. (2020). [Free boundaries in optimal transport and Monge - Ampere obstacle problems](http: // www.math.toronto.edu / ~mccann / papers / annals2010.pdf), Annals of mathematics, 673 - 730. |
266 | | - |
267 | | -[29] Chapel, L., Alaya, M., Gasso, G. (2019). [Partial Gromov - Wasserstein with Applications on Positive - Unlabeled Learning](https: // arxiv.org / abs / 2002.08276), arXiv preprint arXiv: 2002.08276. |
0 commit comments