Skip to content

Commit 71e7984

Browse files
committed
update proper links form readme
1 parent 956df7a commit 71e7984

File tree

3 files changed

+35
-34
lines changed

3 files changed

+35
-34
lines changed

README.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -22,29 +22,29 @@ POT provides the following generic OT solvers (links to examples):
2222
* [OT Network Simplex solver](https://pythonot.github.io/auto_examples/plot_OT_1D.html) for the linear program/ Earth Movers Distance [1] .
2323
* [Conditional gradient](https://pythonot.github.io/auto_examples/plot_optim_OTreg.html) [6] and [Generalized conditional gradient](https://pythonot.github.io/auto_examples/plot_optim_OTreg.html) for regularized OT [7].
2424
* Entropic regularization OT solver with [Sinkhorn Knopp Algorithm](https://pythonot.github.io/auto_examples/plot_OT_1D.html) [2] , stabilized version [9] [10], greedy Sinkhorn [22] and [Screening Sinkhorn [26] ](https://pythonot.github.io/auto_examples/plot_screenkhorn_1D.html) with optional GPU implementation (requires cupy).
25-
* Bregman projections for [Wasserstein barycenter](https://pythonot.github.io/auto_examples/plot_barycenter_lp_vs_entropic.html) [3], [convolutional barycenter](https://pythonot.github.io/auto_examples/plot_convolutional_barycenter.html) [21] and unmixing [4].
25+
* Bregman projections for [Wasserstein barycenter](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html) [3], [convolutional barycenter](https://pythonot.github.io/auto_examples/barycenters/plot_convolutional_barycenter.html) [21] and unmixing [4].
2626
* Sinkhorn divergence [23] and entropic regularization OT from empirical data.
2727
* [Smooth optimal transport solvers](https://pythonot.github.io/auto_examples/plot_OT_1D_smooth.html) (dual and semi-dual) for KL and squared L2 regularizations [17].
28-
* Non regularized [Wasserstein barycenters [16] ](https://pythonot.github.io/auto_examples/plot_barycenter_lp_vs_entropic.html)) with LP solver (only small scale).
29-
* [Gromov-Wasserstein distances](https://pythonot.github.io/auto_examples/plot_gromov.html) and [GW barycenters](https://pythonot.github.io/auto_examples/plot_gromov_barycenter.html) (exact [13] and regularized [12])
30-
* [Fused-Gromov-Wasserstein distances solver](https://pythonot.github.io/auto_examples/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py) and [FGW barycenters](https://pythonot.github.io/auto_examples/plot_barycenter_fgw.html) [24]
28+
* Non regularized [Wasserstein barycenters [16] ](https://pythonot.github.io/auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html)) with LP solver (only small scale).
29+
* [Gromov-Wasserstein distances](https://pythonot.github.io/auto_examples/gromov/plot_gromov.html) and [GW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_gromov_barycenter.html) (exact [13] and regularized [12])
30+
* [Fused-Gromov-Wasserstein distances solver](https://pythonot.github.io/auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py) and [FGW barycenters](https://pythonot.github.io/auto_examples/gromov/plot_barycenter_fgw.html) [24]
3131
* [Stochastic solver](https://pythonot.github.io/auto_examples/plot_stochastic.html) for Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19])
32-
* Non regularized [free support Wasserstein barycenters](https://pythonot.github.io/auto_examples/plot_free_support_barycenter.html) [20].
33-
* [Unbalanced OT](https://pythonot.github.io/auto_examples/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/plot_UOT_barycenter_1D.html) [10, 25].
34-
* [Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
32+
* Non regularized [free support Wasserstein barycenters](https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html) [20].
33+
* [Unbalanced OT](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_1D.html) with KL relaxation and [barycenter](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html) [10, 25].
34+
* [Partial Wasserstein and Gromov-Wasserstein](https://pythonot.github.io/auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html) (exact [29] and entropic [3]
3535
formulations).
3636

3737
POT provides the following Machine Learning related solvers:
3838

3939
* [Optimal transport for domain
4040
adaptation](https://pythonot.github.io/auto_examples/plot_otda_classes.html)
41-
with [group lasso regularization](https://pythonot.github.io/auto_examples/plot_otda_classes.html), [Laplacian regularization](https://pythonot.github.io/auto_examples/plot_otda_laplacian.html) [5] [30] and [semi
42-
supervised setting](https://pythonot.github.io/auto_examples/plot_otda_semi_supervised.html).
43-
* [Linear OT mapping](https://pythonot.github.io/auto_examples/plot_otda_linear_mapping.html) [14] and [Joint OT mapping estimation](https://pythonot.github.io/auto_examples/plot_otda_mapping.html) [8].
44-
* [Wasserstein Discriminant Analysis](https://pythonot.github.io/auto_examples/plot_WDA.html) [11] (requires autograd + pymanopt).
45-
* [JCPOT algorithm for multi-source domain adaptation with target shift](https://pythonot.github.io/auto_examples/plot_otda_jcpot.html) [27].
41+
with [group lasso regularization](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_classes.html), [Laplacian regularization](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_laplacian.html) [5] [30] and [semi
42+
supervised setting](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_semi_supervised.html).
43+
* [Linear OT mapping](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_linear_mapping.html) [14] and [Joint OT mapping estimation](https://pythonot.github.io/auto_examples/plot_otda_mapping.html) [8].
44+
* [Wasserstein Discriminant Analysis](https://pythonot.github.io/auto_examples/domain-adaptation/plot_WDA.html) [11] (requires autograd + pymanopt).
45+
* [JCPOT algorithm for multi-source domain adaptation with target shift](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_jcpot.html) [27].
4646

47-
Some demonstrations are available in the [documentation](https://pythonot.github.io/auto_examples/index.html).
47+
Some other examples are available in the [documentation](https://pythonot.github.io/auto_examples/index.html).
4848

4949
#### Using and citing the toolbox
5050

@@ -153,7 +153,7 @@ ba=ot.barycenter(A,M,reg) # reg is regularization parameter
153153

154154
### Examples and Notebooks
155155

156-
The examples folder contain several examples and use case for the library. The full documentation is available on [https://PythonOT.github.io/](https://PythonOT.github.io/).
156+
The examples folder contain several examples and use case for the library. The full documentation with examples and output is available on [https://PythonOT.github.io/](https://PythonOT.github.io/).
157157

158158

159159
## Acknowledgements

docs/source/index.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,8 @@ Contents
1919
releases
2020

2121
.. include:: readme.rst
22-
:start-line: 5
22+
:start-line: 2
23+
2324

2425

2526
Indices and tables

docs/source/readme.rst

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -29,67 +29,67 @@ POT provides the following generic OT solvers (links to examples):
2929
[26] <auto_examples/plot_screenkhorn_1D.html>`__
3030
with optional GPU implementation (requires cupy).
3131
- Bregman projections for `Wasserstein
32-
barycenter <auto_examples/plot_barycenter_lp_vs_entropic.html>`__
32+
barycenter <auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html>`__
3333
[3], `convolutional
34-
barycenter <auto_examples/plot_convolutional_barycenter.html>`__
34+
barycenter <auto_examples/barycenters/plot_convolutional_barycenter.html>`__
3535
[21] and unmixing [4].
3636
- Sinkhorn divergence [23] and entropic regularization OT from
3737
empirical data.
3838
- `Smooth optimal transport
3939
solvers <auto_examples/plot_OT_1D_smooth.html>`__
4040
(dual and semi-dual) for KL and squared L2 regularizations [17].
4141
- Non regularized `Wasserstein barycenters
42-
[16] <auto_examples/plot_barycenter_lp_vs_entropic.html>`__)
42+
[16] <auto_examples/barycenters/plot_barycenter_lp_vs_entropic.html>`__)
4343
with LP solver (only small scale).
4444
- `Gromov-Wasserstein
45-
distances <auto_examples/plot_gromov.html>`__
45+
distances <auto_examples/gromov/plot_gromov.html>`__
4646
and `GW
47-
barycenters <auto_examples/plot_gromov_barycenter.html>`__
47+
barycenters <auto_examples/gromov/plot_gromov_barycenter.html>`__
4848
(exact [13] and regularized [12])
4949
- `Fused-Gromov-Wasserstein distances
50-
solver <auto_examples/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py>`__
50+
solver <auto_examples/gromov/plot_fgw.html#sphx-glr-auto-examples-plot-fgw-py>`__
5151
and `FGW
52-
barycenters <auto_examples/plot_barycenter_fgw.html>`__
52+
barycenters <auto_examples/gromov/plot_barycenter_fgw.html>`__
5353
[24]
5454
- `Stochastic
5555
solver <auto_examples/plot_stochastic.html>`__
5656
for Large-scale Optimal Transport (semi-dual problem [18] and dual
5757
problem [19])
5858
- Non regularized `free support Wasserstein
59-
barycenters <auto_examples/plot_free_support_barycenter.html>`__
59+
barycenters <auto_examples/barycenters/plot_free_support_barycenter.html>`__
6060
[20].
6161
- `Unbalanced
62-
OT <auto_examples/plot_UOT_1D.html>`__
62+
OT <auto_examples/unbalanced-partial/plot_UOT_1D.html>`__
6363
with KL relaxation and
64-
`barycenter <auto_examples/plot_UOT_barycenter_1D.html>`__
64+
`barycenter <auto_examples/unbalanced-partial/plot_UOT_barycenter_1D.html>`__
6565
[10, 25].
6666
- `Partial Wasserstein and
67-
Gromov-Wasserstein <auto_examples/plot_partial_wass_and_gromov.html>`__
67+
Gromov-Wasserstein <auto_examples/unbalanced-partial/plot_partial_wass_and_gromov.html>`__
6868
(exact [29] and entropic [3] formulations).
6969

7070
POT provides the following Machine Learning related solvers:
7171

7272
- `Optimal transport for domain
7373
adaptation <auto_examples/plot_otda_classes.html>`__
7474
with `group lasso
75-
regularization <auto_examples/plot_otda_classes.html>`__,
75+
regularization <auto_examples/domain-adaptation/plot_otda_classes.html>`__,
7676
`Laplacian
77-
regularization <auto_examples/plot_otda_laplacian.html>`__
77+
regularization <auto_examples/domain-adaptation/plot_otda_laplacian.html>`__
7878
[5] [30] and `semi supervised
79-
setting <auto_examples/plot_otda_semi_supervised.html>`__.
79+
setting <auto_examples/domain-adaptation/plot_otda_semi_supervised.html>`__.
8080
- `Linear OT
81-
mapping <auto_examples/plot_otda_linear_mapping.html>`__
81+
mapping <auto_examples/domain-adaptation/plot_otda_linear_mapping.html>`__
8282
[14] and `Joint OT mapping
8383
estimation <auto_examples/plot_otda_mapping.html>`__
8484
[8].
8585
- `Wasserstein Discriminant
86-
Analysis <auto_examples/plot_WDA.html>`__
86+
Analysis <auto_examples/domain-adaptation/plot_WDA.html>`__
8787
[11] (requires autograd + pymanopt).
8888
- `JCPOT algorithm for multi-source domain adaptation with target
89-
shift <auto_examples/plot_otda_jcpot.html>`__
89+
shift <auto_examples/domain-adaptation/plot_otda_jcpot.html>`__
9090
[27].
9191

92-
Some demonstrations are available in the
92+
Some other examples are available in the
9393
`documentation <auto_examples/index.html>`__.
9494

9595
Using and citing the toolbox
@@ -233,7 +233,7 @@ Examples and Notebooks
233233
~~~~~~~~~~~~~~~~~~~~~~
234234

235235
The examples folder contain several examples and use case for the
236-
library. The full documentation is available on
236+
library. The full documentation with examples and output is available on
237237
https://PythonOT.github.io/.
238238

239239
Acknowledgements

0 commit comments

Comments
 (0)