@@ -19,6 +19,7 @@ It provides the following solvers:
1919 squared L2 regularizations [17].
2020- Non regularized Wasserstein barycenters [16] with LP solver (only
2121 small scale).
22+ - Non regularized free support Wasserstein barycenters [20].
2223- Bregman projections for Wasserstein barycenter [3] and unmixing [4].
2324- Optimal transport for domain adaptation with group lasso
2425 regularization [5]
@@ -29,6 +30,8 @@ It provides the following solvers:
2930 pymanopt).
3031- Gromov-Wasserstein distances and barycenters ([13] and regularized
3132 [12])
33+ - Stochastic Optimization for Large-scale Optimal Transport (semi-dual
34+ problem [18] and dual problem [19])
3235
3336Some demonstrations (both in Python and Jupyter Notebook format) are
3437available in the examples folder.
@@ -219,6 +222,8 @@ The contributors to this library are:
219222- `Stanislas Chambon <https://slasnista.github.io/ >`__
220223- `Antoine Rolet <https://arolet.github.io/ >`__
221224- Erwan Vautier (Gromov-Wasserstein)
225+ - `Kilian Fatras <https://kilianfatras.github.io/ >`__ (Stochastic
226+ optimization)
222227
223228This toolbox benefit a lot from open source research and we would like
224229to thank the following persons for providing some code (in various
@@ -334,6 +339,20 @@ Optimal Transport <https://arxiv.org/abs/1710.06276>`__. Proceedings of
334339the Twenty-First International Conference on Artificial Intelligence and
335340Statistics (AISTATS).
336341
342+ [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) `Stochastic
343+ Optimization for Large-scale Optimal
344+ Transport <arXiv%20preprint%20arxiv:1605.08527> `__. Advances in Neural
345+ Information Processing Systems (2016).
346+
347+ [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet,
348+ A.& Blondel, M. `Large-scale Optimal Transport and Mapping
349+ Estimation <https://arxiv.org/pdf/1711.02283.pdf> `__. International
350+ Conference on Learning Representation (2018)
351+
352+ [20] Cuturi, M. and Doucet, A. (2014) `Fast Computation of Wasserstein
353+ Barycenters <http://proceedings.mlr.press/v32/cuturi14.html> `__.
354+ International Conference in Machine Learning
355+
337356.. |PyPI version | image :: https://badge.fury.io/py/POT.svg
338357 :target: https://badge.fury.io/py/POT
339358.. |Anaconda Cloud | image :: https://anaconda.org/conda-forge/pot/badges/version.svg
0 commit comments