You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- instead of updating individually for each target examples, update for all target examples at once using numpy functions. This allows for a faster computation (for me, divided by 4 on 3000*100 random matricies and random labels in [0,1]).
- if I understoud correctly, a value of -1 in the array labels_a meant that we didn't have a label for this example. But in machine learning, we often encounter the binary case where we say we have the positive class (+1) and negative class (-1); thus with a dataset like this, the algorithm wouldn't work as expected. I replaced the default value for 'no label' to '-99' instead of '-1', and I added a parameter to modify it.
0 commit comments