@@ -16,8 +16,9 @@ def coordinate_grad_semi_dual(b, M, reg, beta, i):
1616 distributions for (i, :)
1717
1818 The function computes the gradient of the semi dual problem:
19+
1920 .. math::
20- \W_varepsilon (a, b) = \max_\v \sum_i (\sum_j v_j * b_j
21+ \W_ \v arepsilon (a, b) = \max_\v \sum_i (\sum_j v_j * b_j
2122 - \r eg log(\sum_j exp((v_j - M_{i,j})/reg) * b_j)) * a_i
2223
2324 where :
@@ -89,6 +90,7 @@ def sag_entropic_transport(a, b, M, reg, numItermax=10000, lr=None):
8990 optimal transport max problem
9091
9192 The function solves the following optimization problem:
93+
9294 .. math::
9395 \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
9496 s.t. \gamma 1 = a
@@ -175,6 +177,7 @@ def averaged_sgd_entropic_transport(a, b, M, reg, numItermax=300000, lr=None):
175177 optimal transport max problem
176178
177179 The function solves the following optimization problem:
180+
178181 .. math::
179182 \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
180183 s.t. \gamma 1 = a
@@ -258,6 +261,7 @@ def c_transform_entropic(b, M, reg, beta):
258261
259262 The function computes the c_transform of a dual variable from the other
260263 dual variable:
264+
261265 .. math::
262266 u = v^{c,reg} = -reg \sum_j exp((v - M)/reg) b_j
263267
@@ -331,6 +335,7 @@ def solve_semi_dual_entropic(a, b, M, reg, method, numItermax=10000, lr=None,
331335 measures optimal transport max problem
332336
333337 The function solves the following optimization problem:
338+
334339 .. math::
335340 \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
336341 s.t. \gamma 1 = a
@@ -436,7 +441,8 @@ def batch_grad_dual_alpha(M, reg, alpha, beta, batch_size, batch_alpha,
436441 Computes the partial gradient of F_\W_varepsilon
437442
438443 Compute the partial gradient of the dual problem:
439- ..Math:
444+
445+ ..math:
440446 \f orall i in batch_alpha,
441447 grad_alpha_i = 1 * batch_size -
442448 sum_{j in batch_beta} exp((alpha_i + beta_j - M_{i,j})/reg)
@@ -518,7 +524,8 @@ def batch_grad_dual_beta(M, reg, alpha, beta, batch_size, batch_alpha,
518524 Computes the partial gradient of F_\W_varepsilon
519525
520526 Compute the partial gradient of the dual problem:
521- ..Math:
527+
528+ ..math:
522529 \f orall j in batch_beta,
523530 grad_beta_j = 1 * batch_size -
524531 sum_{i in batch_alpha} exp((alpha_i + beta_j - M_{i,j})/reg)
@@ -602,6 +609,7 @@ def sgd_entropic_regularization(M, reg, batch_size, numItermax, lr,
602609 optimal transport dual problem
603610
604611 The function solves the following optimization problem:
612+
605613 .. math::
606614 \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
607615 s.t. \gamma 1 = a
@@ -709,6 +717,7 @@ def solve_dual_entropic(a, b, M, reg, batch_size, numItermax=10000, lr=1,
709717 optimal transport dual problem
710718
711719 The function solves the following optimization problem:
720+
712721 .. math::
713722 \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
714723 s.t. \gamma 1 = a
0 commit comments