|
3 | 3 | You can adapt this file completely to your liking, but it should at least |
4 | 4 | contain the root `toctree` directive. |
5 | 5 |
|
6 | | -POT's documentation! |
7 | | -=============================== |
| 6 | +POT: Python Optimal Transport |
| 7 | +============================= |
8 | 8 |
|
9 | | -Contents: |
10 | 9 |
|
11 | | -.. toctree:: |
12 | | - :maxdepth: 2 |
| 10 | +This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. |
13 | 11 |
|
14 | | -Module list |
15 | | -=========== |
| 12 | +It provides the following solvers: |
16 | 13 |
|
| 14 | +* OT solver for the linear program/ Earth Movers Distance [1]. |
| 15 | +* Entropic regularization OT solver with Sinkhorn Knopp Algorithm [2]. |
| 16 | +* Bregman projections for Wasserstein barycenter [3] and unmixing [4]. |
| 17 | +* Optimal transport for domain adaptation with group lasso regularization [5] |
| 18 | +* Conditional gradient [6] and Generalized conditional gradient for regularized OT [7]. |
17 | 19 |
|
18 | | -Module ot |
19 | | ---------- |
| 20 | +Some demonstrations (both in Python and Jupyter Notebook format) are available in the examples folder. |
20 | 21 |
|
21 | | -This module provide easy access to solvers for the most common OT problems |
22 | 22 |
|
23 | | -.. automodule:: ot |
24 | | - :members: |
| 23 | +Contents |
| 24 | +-------- |
25 | 25 |
|
26 | | -Module ot.emd |
27 | | -------------- |
28 | | -.. automodule:: ot.emd |
29 | | - :members: |
| 26 | +.. toctree:: |
| 27 | + :maxdepth: 2 |
30 | 28 |
|
31 | | -Module ot.bregman |
32 | | ------------------ |
| 29 | + self |
| 30 | + all |
| 31 | + examples |
33 | 32 |
|
34 | | -.. automodule:: ot.bregman |
35 | | - :members: |
| 33 | +Examples |
| 34 | +-------- |
36 | 35 |
|
37 | | -Module ot.utils |
38 | | ---------------- |
39 | 36 |
|
40 | | -.. automodule:: ot.utils |
41 | | - :members: |
42 | 37 |
|
43 | | -Module ot.datasets |
44 | | ------------------- |
45 | 38 |
|
46 | | -.. automodule:: ot.datasets |
47 | | - :members: |
| 39 | +References |
| 40 | +---------- |
48 | 41 |
|
49 | | -Module ot.plot |
50 | | --------------- |
| 42 | +[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). Displacement interpolation using Lagrangian mass transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM. |
51 | 43 |
|
52 | | -.. automodule:: ot.plot |
53 | | - :members: |
| 44 | +[2] Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems (pp. 2292-2300). |
54 | 45 |
|
| 46 | +[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. |
55 | 47 |
|
56 | | -Examples |
57 | | -======== |
| 48 | +[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, Supervised planetary unmixing with optimal transport, Whorkshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016. |
| 49 | + |
| 50 | +[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 |
| 51 | + |
| 52 | +[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. |
| 53 | + |
| 54 | +[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567. |
58 | 55 |
|
59 | | -.. literalinclude:: ../../examples/demo_OT_1D.py |
60 | 56 |
|
61 | 57 | Indices and tables |
62 | 58 | ================== |
|
0 commit comments