Skip to content

Commit a0d8139

Browse files
committed
doc index updated
1 parent 0e8363c commit a0d8139

File tree

4 files changed

+97
-35
lines changed

4 files changed

+97
-35
lines changed

docs/source/all.rst

Lines changed: 47 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
2+
3+
Python modules
4+
==============
5+
6+
ot
7+
--
8+
9+
This module provide easy access to solvers for the most common OT problems
10+
11+
.. automodule:: ot
12+
:members:
13+
14+
ot.lp
15+
-----
16+
.. automodule:: ot.lp
17+
:members:
18+
19+
ot.bregman
20+
----------
21+
22+
.. automodule:: ot.bregman
23+
:members:
24+
25+
ot.optim
26+
--------
27+
28+
.. automodule:: ot.optim
29+
:members:
30+
31+
ot.utils
32+
--------
33+
34+
.. automodule:: ot.utils
35+
:members:
36+
37+
ot.datasets
38+
-----------
39+
40+
.. automodule:: ot.datasets
41+
:members:
42+
43+
ot.plot
44+
-------
45+
46+
.. automodule:: ot.plot
47+
:members:

docs/source/examples.rst

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
2+
3+
Examples
4+
============
5+
6+
1D Optimal transport
7+
---------------------
8+
9+
.. literalinclude:: ../../examples/demo_OT_1D.py
10+
11+
2D Optimal transport on empirical distributions
12+
-----------------------------------------------
13+
14+
.. literalinclude:: ../../examples/demo_OT_2D_samples.py

docs/source/index.rst

Lines changed: 31 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -3,60 +3,56 @@
33
You can adapt this file completely to your liking, but it should at least
44
contain the root `toctree` directive.
55
6-
POT's documentation!
7-
===============================
6+
POT: Python Optimal Transport
7+
=============================
88

9-
Contents:
109

11-
.. toctree::
12-
:maxdepth: 2
10+
This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.
1311

14-
Module list
15-
===========
12+
It provides the following solvers:
1613

14+
* OT solver for the linear program/ Earth Movers Distance [1].
15+
* Entropic regularization OT solver with Sinkhorn Knopp Algorithm [2].
16+
* Bregman projections for Wasserstein barycenter [3] and unmixing [4].
17+
* Optimal transport for domain adaptation with group lasso regularization [5]
18+
* Conditional gradient [6] and Generalized conditional gradient for regularized OT [7].
1719

18-
Module ot
19-
---------
20+
Some demonstrations (both in Python and Jupyter Notebook format) are available in the examples folder.
2021

21-
This module provide easy access to solvers for the most common OT problems
2222

23-
.. automodule:: ot
24-
:members:
23+
Contents
24+
--------
2525

26-
Module ot.emd
27-
-------------
28-
.. automodule:: ot.emd
29-
:members:
26+
.. toctree::
27+
:maxdepth: 2
3028

31-
Module ot.bregman
32-
-----------------
29+
self
30+
all
31+
examples
3332

34-
.. automodule:: ot.bregman
35-
:members:
33+
Examples
34+
--------
3635

37-
Module ot.utils
38-
---------------
3936

40-
.. automodule:: ot.utils
41-
:members:
4237

43-
Module ot.datasets
44-
------------------
4538

46-
.. automodule:: ot.datasets
47-
:members:
39+
References
40+
----------
4841

49-
Module ot.plot
50-
--------------
42+
[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). Displacement interpolation using Lagrangian mass transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.
5143

52-
.. automodule:: ot.plot
53-
:members:
44+
[2] Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems (pp. 2292-2300).
5445

46+
[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.
5547

56-
Examples
57-
========
48+
[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, Supervised planetary unmixing with optimal transport, Whorkshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016.
49+
50+
[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
51+
52+
[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
53+
54+
[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.
5855

59-
.. literalinclude:: ../../examples/demo_OT_1D.py
6056

6157
Indices and tables
6258
==================

ot/bregman.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,11 @@ def sinkhorn(a,b, M, reg,numItermax = 1000,stopThr=1e-9):
3939
loss matrix
4040
reg: float
4141
Regularization term >0
42+
numItermax: int, optional
43+
Max number of iterations
44+
stopThr: float, optional
45+
Stop threshol on error (>0)
46+
4247
4348
4449
Returns

0 commit comments

Comments
 (0)