Skip to content

Commit c48829d

Browse files
committed
add domain adaptation demo
1 parent 543be68 commit c48829d

File tree

1 file changed

+96
-0
lines changed

1 file changed

+96
-0
lines changed

examples/demo_OTDA_classes.py

Lines changed: 96 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,96 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
demo of Optimal transport for domain adaptation
4+
"""
5+
6+
import numpy as np
7+
import matplotlib.pylab as pl
8+
import ot
9+
10+
11+
12+
#%% parameters
13+
14+
n=150 # nb bins
15+
16+
xs,ys=ot.datasets.get_data_classif('3gauss',n)
17+
xt,yt=ot.datasets.get_data_classif('3gauss2',n)
18+
19+
a,b = ot.unif(n),ot.unif(n)
20+
# loss matrix
21+
M=ot.dist(xs,xt)
22+
#M/=M.max()
23+
24+
#%% plot samples
25+
26+
pl.figure(1)
27+
28+
pl.subplot(2,2,1)
29+
pl.scatter(xs[:,0],xs[:,1],c=ys,marker='+',label='Source samples')
30+
pl.legend(loc=0)
31+
pl.title('Source distributions')
32+
33+
pl.subplot(2,2,2)
34+
pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples')
35+
pl.legend(loc=0)
36+
pl.title('target distributions')
37+
38+
39+
#%% OT estimation
40+
41+
# EMD
42+
43+
44+
da_emd=ot.da.OTDA()
45+
da_emd.fit(xs,xt)
46+
47+
# interpolate samples
48+
xst0=da_emd.interp()
49+
50+
51+
# sinkhorn
52+
lambd=1e-1
53+
da_entrop=ot.da.OTDA_sinkhorn()
54+
da_entrop.fit(xs,xt,reg=lambd)
55+
xsts=da_entrop.interp()
56+
57+
# Group lasso regularization
58+
reg=1e-1
59+
eta=1e0
60+
da_lpl1=ot.da.OTDA_lpl1()
61+
da_lpl1.fit(xs,ys,xt,reg=lambd,eta=eta)
62+
xstg=da_lpl1.interp()
63+
64+
#%% plot interpolated source samples
65+
pl.figure(4)
66+
67+
param_img={'interpolation':'nearest','cmap':'jet'}
68+
69+
pl.subplot(2,3,1)
70+
pl.imshow(da_emd.G,**param_img)
71+
pl.title('OT matrix')
72+
73+
74+
pl.subplot(2,3,2)
75+
pl.imshow(da_entrop.G,**param_img)
76+
pl.title('OT matrix sinkhorn')
77+
78+
pl.subplot(2,3,3)
79+
pl.imshow(da_lpl1.G,**param_img)
80+
pl.title('OT matrix Group Lasso')
81+
82+
pl.subplot(2,3,4)
83+
pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=0.3)
84+
pl.scatter(xst0[:,0],xst0[:,1],c=ys,marker='+',label='Transp samples',s=30)
85+
pl.title('Interp samples')
86+
pl.legend(loc=0)
87+
88+
pl.subplot(2,3,5)
89+
pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=0.3)
90+
pl.scatter(xsts[:,0],xsts[:,1],c=ys,marker='+',label='Transp samples',s=30)
91+
pl.title('Interp samples Sinkhorn')
92+
93+
pl.subplot(2,3,6)
94+
pl.scatter(xt[:,0],xt[:,1],c=yt,marker='o',label='Target samples',alpha=0.3)
95+
pl.scatter(xstg[:,0],xstg[:,1],c=ys,marker='+',label='Transp samples',s=30)
96+
pl.title('Interp samples Group Lasso')

0 commit comments

Comments
 (0)