@@ -920,8 +920,8 @@ def barycenter(A, M, reg, weights=None, numItermax=1000,
920920
921921
922922def convolutional_barycenter2d (A , reg , weights = None , numItermax = 10000 , stopThr = 1e-9 , stabThr = 1e-30 , verbose = False , log = False ):
923- """Compute the entropic regularized wasserstein barycenter of distributions A
924- where A is a collection of 2D images.
923+ """Compute the entropic regularized wasserstein barycenter of distributions A
924+ where A is a collection of 2D images.
925925
926926 The function solves the following optimization problem:
927927
@@ -949,7 +949,7 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1
949949 stopThr : float, optional
950950 Stop threshol on error (>0)
951951 stabThr : float, optional
952- Stabilization threshold to avoid numerical precision issue
952+ Stabilization threshold to avoid numerical precision issue
953953 verbose : bool, optional
954954 Print information along iterations
955955 log : bool, optional
@@ -967,9 +967,9 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1
967967 References
968968 ----------
969969
970- .. [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015).
971- Convolutional wasserstein distances: Efficient optimal transportation on geometric domains
972- ACM Transactions on Graphics (TOG), 34(4), 66
970+ .. [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015).
971+ Convolutional wasserstein distances: Efficient optimal transportation on geometric domains
972+ ACM Transactions on Graphics (TOG), 34(4), 66
973973
974974
975975 """
0 commit comments