@@ -10,7 +10,8 @@ machine learning.
1010
1111It provides the following solvers:
1212
13- - OT solver for the linear program/ Earth Movers Distance [1].
13+ - OT Network Flow solver for the linear program/ Earth Movers Distance
14+ [1].
1415- Entropic regularization OT solver with Sinkhorn Knopp Algorithm [2]
1516 and stabilized version [9][10] with optional GPU implementation
1617 (required cudamat).
@@ -19,10 +20,11 @@ It provides the following solvers:
1920 regularization [5]
2021- Conditional gradient [6] and Generalized conditional gradient for
2122 regularized OT [7].
22- - Joint OT matrix and mapping estimation [8].
23+ - Linear OT [14] and Joint OT matrix and mapping estimation [8].
2324- Wasserstein Discriminant Analysis [11] (requires autograd +
2425 pymanopt).
25- - Gromov-Wasserstein distances and barycenters [12]
26+ - Gromov-Wasserstein distances and barycenters ([13] and regularized
27+ [12])
2628
2729Some demonstrations (both in Python and Jupyter Notebook format) are
2830available in the examples folder.
@@ -315,8 +317,8 @@ Foundations of computational mathematics 11.4 (2011): 417-487.
315317distributions <https://link.springer.com/article/10.1007/BF00934745> `__,
316318Journal of Optimization Theory and Applications Vol 43, 1984.
317319
318- [15] Peyré, G., & Cuturi, M. (2017 ). `Computational Optimal
319- Transport <https://arxiv.org/pdf/1803.00567.pdf> `__ , 2018 .
320+ [15] Peyré, G., & Cuturi, M. (2018 ). `Computational Optimal
321+ Transport <https://arxiv.org/pdf/1803.00567.pdf> `__ .
320322
321323.. |PyPI version | image :: https://badge.fury.io/py/POT.svg
322324 :target: https://badge.fury.io/py/POT
0 commit comments