@@ -920,8 +920,8 @@ def barycenter(A, M, reg, weights=None, numItermax=1000,
920920
921921
922922def convolutional_barycenter2d (A , reg , weights = None , numItermax = 10000 , stopThr = 1e-9 , verbose = False , log = False ):
923- """Compute the entropic regularized wasserstein barycenter of distributions A
924- where A is a collection of 2D images.
923+ """Compute the entropic regularized wasserstein barycenter of distributions A
924+ where A is a collection of 2D images.
925925
926926 The function solves the following optimization problem:
927927
@@ -966,8 +966,8 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1
966966 ----------
967967
968968 .. [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015).
969- Convolutional wasserstein distances: Efficient optimal transportation on geometric domains
970- ACM Transactions on Graphics (TOG), 34(4), 66
969+ Convolutional wasserstein distances: Efficient optimal transportation on geometric domains
970+ ACM Transactions on Graphics (TOG), 34(4), 66
971971
972972
973973 """
@@ -993,7 +993,8 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1
993993 [Y , X ] = np .meshgrid (t , t )
994994 xi1 = np .exp (- (X - Y )** 2 / reg )
995995
996- def K (x ): return np .dot (np .dot (xi1 , x ), xi1 )
996+ def K (x ):
997+ return np .dot (np .dot (xi1 , x ), xi1 )
997998
998999 while (err > stopThr and cpt < numItermax ):
9991000
0 commit comments