@@ -48,11 +48,11 @@ def gromov_wasserstein(
4848 \mathbf{T}^* \in \mathop{\arg \min}_\mathbf{T} \quad \sum_{i,j,k,l}
4949 L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
5050
51- s.t. \ \mathbf{\gamma } \mathbf{1} &= \mathbf{p}
51+ s.t. \ \mathbf{T } \mathbf{1} &= \mathbf{p}
5252
53- \mathbf{\gamma }^T \mathbf{1} &= \mathbf{q}
53+ \mathbf{T }^T \mathbf{1} &= \mathbf{q}
5454
55- \mathbf{\gamma } &\geq 0
55+ \mathbf{T } &\geq 0
5656
5757 Where :
5858
@@ -65,7 +65,7 @@ def gromov_wasserstein(
6565 .. note:: This function is backend-compatible and will work on arrays
6666 from all compatible backends. But the algorithm uses the C++ CPU backend
6767 which can lead to copy overhead on GPU arrays.
68- .. note:: All computations in the conjugate gradient solver are done with
68+ .. note:: All computations in the conditional gradient solver are done with
6969 numpy to limit memory overhead.
7070 .. note:: This function will cast the computed transport plan to the data
7171 type of the provided input :math:`\mathbf{C}_1`. Casting to an integer
@@ -279,11 +279,11 @@ def gromov_wasserstein2(
279279 \mathbf{GW} = \min_\mathbf{T} \quad \sum_{i,j,k,l}
280280 L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l}
281281
282- s.t. \ \mathbf{\gamma } \mathbf{1} &= \mathbf{p}
282+ s.t. \ \mathbf{T } \mathbf{1} &= \mathbf{p}
283283
284- \mathbf{\gamma }^T \mathbf{1} &= \mathbf{q}
284+ \mathbf{T }^T \mathbf{1} &= \mathbf{q}
285285
286- \mathbf{\gamma } &\geq 0
286+ \mathbf{T } &\geq 0
287287
288288 Where :
289289
@@ -300,7 +300,7 @@ def gromov_wasserstein2(
300300 .. note:: This function is backend-compatible and will work on arrays
301301 from all compatible backends. But the algorithm uses the C++ CPU backend
302302 which can lead to copy overhead on GPU arrays.
303- .. note:: All computations in the conjugate gradient solver are done with
303+ .. note:: All computations in the conditional gradient solver are done with
304304 numpy to limit memory overhead.
305305 .. note:: This function will cast the computed transport plan to the data
306306 type of the provided input :math:`\mathbf{C}_1`. Casting to an integer
@@ -468,7 +468,7 @@ def fused_gromov_wasserstein(
468468 .. note:: This function is backend-compatible and will work on arrays
469469 from all compatible backends. But the algorithm uses the C++ CPU backend
470470 which can lead to copy overhead on GPU arrays.
471- .. note:: All computations in the conjugate gradient solver are done with
471+ .. note:: All computations in the conditional gradient solver are done with
472472 numpy to limit memory overhead.
473473 .. note:: This function will cast the computed transport plan to the data
474474 type of the provided input :math:`\mathbf{M}`. Casting to an integer
@@ -707,7 +707,7 @@ def fused_gromov_wasserstein2(
707707 .. note:: This function is backend-compatible and will work on arrays
708708 from all compatible backends. But the algorithm uses the C++ CPU backend
709709 which can lead to copy overhead on GPU arrays.
710- .. note:: All computations in the conjugate gradient solver are done with
710+ .. note:: All computations in the conditional gradient solver are done with
711711 numpy to limit memory overhead.
712712 .. note:: This function will cast the computed transport plan to the data
713713 type of the provided input :math:`\mathbf{M}`. Casting to an integer
0 commit comments