|
4 | 4 | "seg2aff_v0", |
5 | 5 | "seg2aff_v1", |
6 | 6 | "seg2aff_v2", |
| 7 | + "seg2aff_pni", |
7 | 8 | ] |
8 | 9 |
|
9 | 10 |
|
@@ -67,6 +68,46 @@ def mknhood3d_aniso(radiusxy: int=1, radiusxy_zminus1: float=1.8): |
67 | 68 |
|
68 | 69 | return np.ascontiguousarray(nhood) |
69 | 70 |
|
| 71 | +def seg2aff_pni(img, dz=1, dy=1, dx=1, dtype='float32'): |
| 72 | + # https://github.com/torms3/DataProvider/blob/master/python/transform.py |
| 73 | + """ |
| 74 | + Transform segmentation to 3D affinity graph. |
| 75 | +
|
| 76 | + Args: |
| 77 | + img: 3D indexed image, with each index corresponding to each segment. |
| 78 | +
|
| 79 | + Returns: |
| 80 | + ret: 3D affinity graph (4D tensor), 3 channels for z, y, x direction. |
| 81 | + """ |
| 82 | + img = check_volume(img) |
| 83 | + ret = np.zeros((3,) + img.shape, dtype=dtype) |
| 84 | + |
| 85 | + |
| 86 | + # z-affinity. |
| 87 | + assert dz and abs(dz) < img.shape[-3] |
| 88 | + if dz > 0: |
| 89 | + ret[2,dz:,:,:] = (img[dz:,:,:]==img[:-dz,:,:]) & (img[dz:,:,:]>0) |
| 90 | + else: |
| 91 | + dz = abs(dz) |
| 92 | + ret[2,:-dz,:,:] = (img[dz:,:,:]==img[:-dz,:,:]) & (img[dz:,:,:]>0) |
| 93 | + |
| 94 | + # y-affinity. |
| 95 | + assert dy and abs(dy) < img.shape[-2] |
| 96 | + if dy > 0: |
| 97 | + ret[1,:,dy:,:] = (img[:,dy:,:]==img[:,:-dy,:]) & (img[:,dy:,:]>0) |
| 98 | + else: |
| 99 | + dy = abs(dy) |
| 100 | + ret[1,:,:-dy,:] = (img[:,dy:,:]==img[:,:-dy,:]) & (img[:,dy:,:]>0) |
| 101 | + |
| 102 | + # x-affinity. |
| 103 | + assert dx and abs(dx) < img.shape[-1] |
| 104 | + if dx > 0: |
| 105 | + ret[0,:,:,dx:] = (img[:,:,dx:]==img[:,:,:-dx]) & (img[:,:,dx:]>0) |
| 106 | + else: |
| 107 | + dx = abs(dx) |
| 108 | + ret[0,:,:,:-dx] = (img[:,:,dx:]==img[:,:,:-dx]) & (img[:,:,dx:]>0) |
| 109 | + |
| 110 | + return ret |
70 | 111 |
|
71 | 112 | def seg_to_aff(seg, nhood=mknhood3d(1), pad='replicate'): |
72 | 113 | # Constructs an affinity graph from a segmentation |
|
0 commit comments