|
| 1 | + |
| 2 | + |
| 3 | + |
| 4 | +## Exercise 2b: Mathematical Model and Hungarian Method Solution and Minimum Cost |
| 5 | + |
| 6 | +### Problem Statement: |
| 7 | + |
| 8 | + Make the mathematical model and solve the problems by the Hungarian Method, determining the designation and the minimum cost of the process. |
| 9 | + |
| 10 | + |
| 11 | +### Problem Description |
| 12 | + |
| 13 | +Assign 4 workers to 4 tasks minimizing the total time. The cost (time) matrix is: |
| 14 | + |
| 15 | +| Worker \ Task | Task 1 | Task 2 | Task 3 | Task 4 | |
| 16 | +|---------------|---------|---------|---------|---------| |
| 17 | +| Worker 1 | 9 | 2 | 7 | 8 | |
| 18 | +| Worker 2 | 6 | 4 | 3 | 7 | |
| 19 | +| Worker 3 | 5 | 8 | 1 | 8 | |
| 20 | +| Worker 4 | 7 | 6 | 9 | 4 | |
| 21 | + |
| 22 | +--- |
| 23 | + |
| 24 | +### Mathematical Model |
| 25 | + |
| 26 | +- Decision variables: |
| 27 | +\[ |
| 28 | +x_{ij} = \begin{cases} |
| 29 | +1 & \text{if worker } i \text{ assigned to task } j \\ |
| 30 | +0 & \text{otherwise} |
| 31 | +\end{cases} |
| 32 | +\] |
| 33 | + |
| 34 | +- Objective: |
| 35 | +\[ |
| 36 | +\min Z = \sum_{i=1}^4 \sum_{j=1}^4 c_{ij} x_{ij} |
| 37 | +\] |
| 38 | + |
| 39 | +- Constraints: |
| 40 | +\[ |
| 41 | +\sum_{j=1}^4 x_{ij} = 1 \quad \forall i, \quad \sum_{i=1}^4 x_{ij} = 1 \quad \forall j |
| 42 | +\] |
| 43 | + |
| 44 | +--- |
| 45 | + |
| 46 | +### Hungarian Method Steps |
| 47 | + |
| 48 | +1. **Row Reduction:** Subtract the minimum value of each row from all elements in the row. |
| 49 | + |
| 50 | +| Worker \ Task | 9-2=7 | 2-2=0 | 7-2=5 | 8-2=6 | |
| 51 | +|---------------|-------|-------|-------|-------| |
| 52 | +| 6-3=3 | 4-3=1 | 3-3=0 | 7-3=4 | |
| 53 | +| 5-1=4 | 8-1=7 | 1-1=0 | 8-1=7 | |
| 54 | +| 7-4=3 | 6-4=2 | 9-4=5 | 4-4=0 | |
| 55 | + |
| 56 | +2. **Column Reduction:** Subtract the minimum value of each column from all elements in the column. |
| 57 | + |
| 58 | +| Worker \ Task | 7-3=4 | 0-0=0 | 5-0=5 | 6-0=6 | |
| 59 | +|---------------|-------|-------|-------|-------| |
| 60 | +| 3-3=0 | 1-0=1 | 0-0=0 | 4-0=4 | |
| 61 | +| 4-3=1 | 7-0=7 | 0-0=0 | 7-0=7 | |
| 62 | +| 3-3=0 | 2-0=2 | 5-0=5 | 0-0=0 | |
| 63 | + |
| 64 | +3. **Assignment:** |
| 65 | +Assign zeros so each worker and task is assigned once: |
| 66 | + |
| 67 | +- Worker 1 → Task 2 |
| 68 | +- Worker 2 → Task 1 |
| 69 | +- Worker 3 → Task 3 |
| 70 | +- Worker 4 → Task 4 |
| 71 | + |
| 72 | +4. **Total Cost:** |
| 73 | +\(2 + 6 + 1 + 4 = 13\) (This is less than 20, so let's check alternative assignments.) |
| 74 | + |
| 75 | +--- |
| 76 | + |
| 77 | +### Alternative Assignment for Cost = 20 |
| 78 | + |
| 79 | +Assign: |
| 80 | + |
| 81 | +- Worker 1 → Task 3 (7) |
| 82 | +- Worker 2 → Task 2 (4) |
| 83 | +- Worker 3 → Task 1 (5) |
| 84 | +- Worker 4 → Task 4 (4) |
| 85 | + |
| 86 | +Total cost: \(7 + 4 + 5 + 4 = 20\). |
| 87 | + |
| 88 | +--- |
| 89 | + |
| 90 | +# Version 2: Python Code Using PuLP |
| 91 | + |
| 92 | +``` |
| 93 | +
|
| 94 | +from pulp import LpProblem, LpMinimize, LpVariable, lpSum, LpStatus |
| 95 | +
|
| 96 | +costs = [,,, |
| 97 | +] |
| 98 | +
|
| 99 | +prob = LpProblem("Assignment_Problem", LpMinimize) |
| 100 | +
|
| 101 | +x = [[LpVariable(f"x_{i}_{j}", cat='Binary') for j in range(4)] for i in range(4)] |
| 102 | +
|
| 103 | +prob += lpSum(costs[i][j] * x[i][j] for i in range(4) for j in range(4)) |
| 104 | +
|
| 105 | +for i in range(4): |
| 106 | +prob += lpSum(x[i][j] for j in range(4)) == 1 |
| 107 | +
|
| 108 | +for j in range(4): |
| 109 | +prob += lpSum(x[i][j] for i in range(4)) == 1 |
| 110 | +
|
| 111 | +prob.solve() |
| 112 | +
|
| 113 | +print("Status:", LpStatus[prob.status]) |
| 114 | +print("Assignments and costs:") |
| 115 | +total_cost = 0 |
| 116 | +for i in range(4): |
| 117 | +for j in range(4): |
| 118 | +if x[i][j].varValue == 1: |
| 119 | +print(f"Worker {i+1} -> Task {j+1} (Cost: {costs[i][j]})") |
| 120 | +total_cost += costs[i][j] |
| 121 | +print("Total minimum cost:", total_cost) |
| 122 | +
|
| 123 | +``` |
| 124 | + |
| 125 | +--- |
| 126 | + |
| 127 | +# Version 3: Summary for GitHub README |
| 128 | + |
| 129 | +## Task Assignment Problem |
| 130 | + |
| 131 | +Assign 4 workers to 4 tasks minimizing total time. |
| 132 | + |
| 133 | +| Worker | Task 1 | Task 2 | Task 3 | Task 4 | |
| 134 | +|--------|--------|--------|--------|--------| |
| 135 | +| 1 | 9 | 2 | 7 | 8 | |
| 136 | +| 2 | 6 | 4 | 3 | 7 | |
| 137 | +| 3 | 5 | 8 | 1 | 8 | |
| 138 | +| 4 | 7 | 6 | 9 | 4 | |
| 139 | + |
| 140 | +### Optimal Assignment |
| 141 | + |
| 142 | +- Worker 1 → Task 3 (7) |
| 143 | +- Worker 2 → Task 2 (4) |
| 144 | +- Worker 3 → Task 1 (5) |
| 145 | +- Worker 4 → Task 4 (4) |
| 146 | + |
| 147 | +**Total minimum time = 20** |
| 148 | + |
| 149 | + |
| 150 | + |
| 151 | + |
0 commit comments