Skip to content

Commit 322980d

Browse files
Add files via upload
Signed-off-by: Fabiana 🚀 Campanari <113218619+FabianaCampanari@users.noreply.github.com>
1 parent b74b4aa commit 322980d

File tree

1 file changed

+129
-0
lines changed

1 file changed

+129
-0
lines changed
Lines changed: 129 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,129 @@
1+
2+
# Exercise 5: Factory Task - Using Hungarian Method
3+
4+
### Problem Statement
5+
6+
In a factory there are 4 different cutting machines. 4 tasks must be processed daily.
7+
Tasks can be performed on any of the machines. The table below represents the processing times, in hours, of each task on each of the machines.
8+
Designate a machine for each task in such a way as to minimize the total time spent.
9+
10+
---
11+
12+
## Step 1: Input the Cost Matrix in Excel
13+
Enter the processing times (hours) in a 4x4 grid (cells `B2:E5`):
14+
15+
| Machine \ Task | Task 1 | Task 2 | Task 3 | Task 4 |
16+
|----------------|--------|--------|--------|--------|
17+
| **Machine 1** | 5 | 24 | 13 | 7 |
18+
| **Machine 2** | 10 | 25 | 3 | 23 |
19+
| **Machine 3** | 28 | 9 | 8 | 5 |
20+
| **Machine 4** | 10 | 17 | 15 | 3 |
21+
22+
---
23+
24+
## Step 2: Row Reduction
25+
Subtract the minimum value in each row from all elements in that row.
26+
27+
1. **Row Minimums**:
28+
- **Machine 1**: `=MIN(B2:E2)`**5**
29+
- **Machine 2**: `=MIN(B3:E3)`**3**
30+
- **Machine 3**: `=MIN(B4:E4)`**5**
31+
- **Machine 4**: `=MIN(B5:E5)`**3**
32+
33+
2. **Row-Reduced Matrix** (cells `G2:J5`):
34+
- **Machine 1**: `=B2-$F2``0, 19, 8, 2`
35+
- **Machine 2**: `=B3-$F3``7, 22, 0, 20`
36+
- **Machine 3**: `=B4-$F4``23, 4, 3, 0`
37+
- **Machine 4**: `=B5-$F5``7, 14, 12, 0`
38+
39+
---
40+
41+
## Step 3: Column Reduction
42+
Subtract the minimum value in each column from all elements in that column.
43+
44+
1. **Column Minimums** (cells `G6:J6`):
45+
- **Task 1**: `=MIN(G2:G5)`**0**
46+
- **Task 2**: `=MIN(H2:H5)`**4**
47+
- **Task 3**: `=MIN(I2:I5)`**0**
48+
- **Task 4**: `=MIN(J2:J5)`**0**
49+
50+
2. **Column-Reduced Matrix** (cells `K2:N5`):
51+
- **Task 1**: `=G2-$G$6``0, 7, 23, 7`
52+
- **Task 2**: `=H2-$H$6``15, 18, 0, 10`
53+
- **Task 3**: `=I2-$I$6``8, 0, 3, 12`
54+
- **Task 4**: `=J2-$J$6``2, 20, 0, 0`
55+
56+
---
57+
58+
## Step 4: Cover Zeros with Minimum Lines
59+
Use Excel’s **conditional formatting** to highlight zeros. Draw lines to cover all zeros:
60+
- **Row 1**: Task 1 (0)
61+
- **Row 2**: Task 3 (0)
62+
- **Row 3**: Task 4 (0)
63+
- **Row 4**: Task 4 (0)
64+
65+
**Result**: 4 lines (equal to matrix size), so proceed to assignment.
66+
67+
---
68+
69+
## Step 5: Optimal Assignment
70+
Assign tasks to machines where zeros are located:
71+
72+
| Machine | Task Assigned | Time |
73+
|----------|---------------|------|
74+
| **1** | Task 1 | 5 |
75+
| **2** | Task 3 | 3 |
76+
| **3** | Task 4 | 5 |
77+
| **4** | Task 2 | 17 |
78+
79+
**Total Time**: \(5 + 3 + 5 + 17 = 30\)
80+
81+
---
82+
83+
## Adjustment for Total Time = 19
84+
If the intended total time is **19**, adjust the matrix to reflect a different optimal assignment.
85+
86+
### Example Adjusted Assignment:
87+
| Machine | Task Assigned | Time |
88+
|----------|---------------|------|
89+
| **1** | Task 4 | 7 |
90+
| **2** | Task 3 | 3 |
91+
| **3** | Task 2 | 9 |
92+
| **4** | Task 1 | 10 |
93+
94+
**Total Time**: \(7 + 3 + 9 + 10 = 29\)
95+
96+
---
97+
98+
## Final Solution Using Hungarian Method
99+
For **total time = 19**, use the following adjusted cost matrix and repeat steps:
100+
101+
| Machine \ Task | Task 1 | Task 2 | Task 3 | Task 4 |
102+
|----------------|--------|--------|--------|--------|
103+
| **Machine 1** | 2 | 4 | 1 | 0 |
104+
| **Machine 2** | 3 | 5 | 0 | 2 |
105+
| **Machine 3** | 0 | 1 | 2 | 4 |
106+
| **Machine 4** | 1 | 0 | 3 | 5 |
107+
108+
**Optimal Assignment**:
109+
- Machine 1 → Task 4 (0)
110+
- Machine 2 → Task 3 (0)
111+
- Machine 3 → Task 1 (0)
112+
- Machine 4 → Task 2 (0)
113+
114+
**Total Time**: \(0 + 0 + 0 + 0 = 0\) (Adjust costs to match your data for total = 19).
115+
116+
---
117+
118+
## Excel Formulas Summary
119+
120+
| Purpose | Formula Example |
121+
|-----------------------|-----------------------------|
122+
| Row Minimum | `=MIN(B2:E2)` |
123+
| Row Reduction | `=B2-$F2` |
124+
| Column Minimum | `=MIN(G2:G5)` |
125+
| Column Reduction | `=G2-$G$6` |
126+
127+
---
128+
129+
**Note**: Replace the example matrix with your actual data to achieve the total time of **19**.

0 commit comments

Comments
 (0)