Skip to content

Commit 95537b5

Browse files
Update README.md
Signed-off-by: Fabiana 🧬 Campanari <113218619+FabianaCampanari@users.noreply.github.com>
1 parent 2eeee83 commit 95537b5

File tree

1 file changed

+24
-2
lines changed

1 file changed

+24
-2
lines changed

README.md

Lines changed: 24 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -92,6 +92,8 @@ The [key difference]() between sim-opt and other analytical tools is its [abilit
9292

9393
### [An optimization problem]() can be represented using the `optidef` package. For example:
9494

95+
<br>
96+
9597
$$
9698
\begin{aligned}
9799
&\min_{x} f(x) \\
@@ -113,6 +115,8 @@ $$
113115

114116
## [Simplex Algorithm]():
115117

118+
<br>
119+
116120
The simplex algorithm is used to solve linear problems. Although there isn't a specific command for it, we can describe it in text or use tables to show the steps of the algorithm.
117121

118122
<br>
@@ -121,6 +125,8 @@ The simplex algorithm is used to solve linear problems. Although there isn't a s
121125

122126
A matrix can be created using the `amsmath` package:
123127

128+
<br>
129+
124130
$$
125131
A =
126132
\begin{bmatrix}
@@ -145,6 +151,8 @@ a_{21} & a_{22}
145151

146152
Simulation generally involves complex mathematical models that can be described using differential or integral equations.
147153

154+
<br>
155+
148156
$$
149157
y(t) = A e^{kt}
150158
$$
@@ -199,6 +207,8 @@ Z = 20x_1 + 12.5x_2
199207

200208
### [Subject to Constraints]():
201209

210+
<br>
211+
202212
$$
203213
\begin{cases}
204214
\frac{x_1}{2} + \frac{x_2}{3} \leq 130 \\
@@ -257,25 +267,31 @@ $$\frac{x_1}{2} + \frac{2x_2}{3} \leq 170$$
257267

258268
### [Optimal Solution]():
259269

260-
#### Solving the system yields:
270+
### Solving the system yields:
271+
272+
<br>
261273

262274
$$
263275
(x_1, x_2) = (180, 120)
264276
$$
265277

278+
<br>
266279

267280
```latex
268281
\(x_1, x_2) = (180, 120)
269282
```
270283

271284
<br>
272285

273-
### [Maximum Profit Calculation]()
286+
### [Maximum Profit Calculation]():
287+
288+
<br>
274289

275290
$$
276291
Z = 20(180) + 12.5(120)
277292
$$
278293

294+
<br>
279295

280296
```latex
281297
\Z = 20(180) + 12.5(120)
@@ -289,6 +305,12 @@ $$
289305

290306
<br>
291307

308+
```latex
309+
\Z = 3600 + 1500 = 5100
310+
```
311+
312+
<br>
313+
292314
Thus, the maximum profit achievable is [**R$ 5,100**]().
293315

294316

0 commit comments

Comments
 (0)