|
| 1 | + |
| 2 | + |
| 3 | +# Exercise 4s: Mathematical Model and Hungarian Method - Health Posts and Doctors |
| 4 | + |
| 5 | +### Problem Statement: |
| 6 | + |
| 7 | +The City Hall of a city needs to fill a vacancy: in 4 health posts and for this it has 6 doctors in the required specialties. |
| 8 | +Each doctor can be allocated to a single post, at most and each post demands a single doctor. In the table below we have the daily cost |
| 9 | +of transportation of each doctor to each health center. Do the mathematical modeling and determine the designation and the minimum cost. |
| 10 | + |
| 11 | + |
| 12 | + |
| 13 | +## **Mathematical Model** |
| 14 | + |
| 15 | +### **Decision Variables** |
| 16 | + |
| 17 | +Let \$ x_{ij} \$ be: |
| 18 | + |
| 19 | +$$ |
| 20 | +x_{ij} = |
| 21 | +\begin{cases} |
| 22 | +1 & \text{if doctor } j \text{ is assigned to post } i \\ |
| 23 | +0 & \text{otherwise} |
| 24 | +\end{cases} |
| 25 | +$$ |
| 26 | + |
| 27 | +### **Objective Function** |
| 28 | + |
| 29 | +Minimize the total cost: |
| 30 | + |
| 31 | +$$ |
| 32 | +\text{Minimize } Z = \sum_{i=1}^4 \sum_{j=1}^6 c_{ij} x_{ij} |
| 33 | +$$ |
| 34 | + |
| 35 | +where \$ c_{ij} \$ is the cost of assigning doctor \$ j \$ to post \$ i \$. |
| 36 | + |
| 37 | +### **Constraints** |
| 38 | + |
| 39 | +- Each post must have exactly one doctor: |
| 40 | + |
| 41 | +$$ |
| 42 | +\sum_{j=1}^6 x_{ij} = 1 \quad \forall i = 1,2,3,4 |
| 43 | +$$ |
| 44 | + |
| 45 | +- Each doctor can be assigned to at most one post: |
| 46 | + |
| 47 | +$$ |
| 48 | +\sum_{i=1}^4 x_{ij} \leq 1 \quad \forall j = 1,2,3,4,5,6 |
| 49 | +$$ |
| 50 | + |
| 51 | +- \$ x_{ij} \in \{0,1\} \$ |
| 52 | + |
| 53 | +--- |
| 54 | + |
| 55 | +## **Cost Matrix** |
| 56 | + |
| 57 | +| Post \ Doctor | M1 | M2 | M3 | M4 | M5 | M6 | |
| 58 | +| :-- | :-- | :-- | :-- | :-- | :-- | :-- | |
| 59 | +| **1** | 6 | 9 | 9 | 9 | 8 | 7 | |
| 60 | +| **2** | 3 | 5 | 6 | 9 | 7 | 5 | |
| 61 | +| **3** | 8 | 7 | 5 | 8 | 7 | 6 | |
| 62 | +| **4** | 3 | 4 | 8 | 5 | 7 | 4 | |
| 63 | + |
| 64 | + |
| 65 | +--- |
| 66 | + |
| 67 | +## **Step-by-Step Solution Using the Hungarian Method** |
| 68 | + |
| 69 | +Since there are more doctors (6) than posts (4), **add two dummy posts** (rows) with zero cost to make it a 6x6 square matrix. |
| 70 | + |
| 71 | + |
| 72 | +| Post \ Doctor | M1 | M2 | M3 | M4 | M5 | M6 | |
| 73 | +| :-- | :-- | :-- | :-- | :-- | :-- | :-- | |
| 74 | +| **1** | 6 | 9 | 9 | 9 | 8 | 7 | |
| 75 | +| **2** | 3 | 5 | 6 | 9 | 7 | 5 | |
| 76 | +| **3** | 8 | 7 | 5 | 8 | 7 | 6 | |
| 77 | +| **4** | 3 | 4 | 8 | 5 | 7 | 4 | |
| 78 | +| **Dummy 1** | 0 | 0 | 0 | 0 | 0 | 0 | |
| 79 | +| **Dummy 2** | 0 | 0 | 0 | 0 | 0 | 0 | |
| 80 | + |
| 81 | + |
| 82 | +--- |
| 83 | + |
| 84 | +### **Step 1: Row Reduction** |
| 85 | + |
| 86 | +Subtract the minimum value in each row from all elements in that row. |
| 87 | + |
| 88 | +- Row 1 min: 6 →[^1] |
| 89 | +- Row 2 min: 3 → |
| 90 | +- Row 3 min: 5 →[^1] |
| 91 | +- Row 4 min: 3 →[^1][^1] |
| 92 | +- Dummy rows: all zeros |
| 93 | + |
| 94 | +--- |
| 95 | + |
| 96 | +### **Step 2: Column Reduction** |
| 97 | + |
| 98 | +Subtract the minimum value in each column from all elements in that column. |
| 99 | + |
| 100 | +- Col 1 min: 0 |
| 101 | +- Col 2 min: 1 |
| 102 | +- Col 3 min: 0 |
| 103 | +- Col 4 min: 0 |
| 104 | +- Col 5 min: 0 |
| 105 | +- Col 6 min: 0 |
| 106 | + |
| 107 | +After column reduction: |
| 108 | + |
| 109 | + |
| 110 | +| | M1 | M2 | M3 | M4 | M5 | M6 | |
| 111 | +| :-- | :-- | :-- | :-- | :-- | :-- | :-- | |
| 112 | +| 1 | 0 | 2 | 3 | 3 | 2 | 1 | |
| 113 | +| 2 | 0 | 1 | 3 | 6 | 4 | 2 | |
| 114 | +| 3 | 3 | 1 | 0 | 3 | 2 | 1 | |
| 115 | +| 4 | 0 | 0 | 5 | 2 | 4 | 1 | |
| 116 | +| D1 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 117 | +| D2 | 0 | 0 | 0 | 0 | 0 | 0 | |
| 118 | + |
| 119 | + |
| 120 | +--- |
| 121 | + |
| 122 | +### **Step 3: Assignment** |
| 123 | + |
| 124 | +Assign one zero per row and column, prioritizing unique zeros: |
| 125 | + |
| 126 | +- Post 1 → M1 (cost 6) |
| 127 | +- Post 2 → M2 (cost 5) |
| 128 | +- Post 3 → M3 (cost 5) |
| 129 | +- Post 4 → M6 (cost 4) |
| 130 | + |
| 131 | +(You may need to adjust if there is a conflict, but this is a valid assignment.) |
| 132 | + |
| 133 | +--- |
| 134 | + |
| 135 | +### **Step 4: Minimum Total Cost** |
| 136 | + |
| 137 | +Sum the original costs for the assignments: |
| 138 | + |
| 139 | +- Post 1 → M1: 6 |
| 140 | +- Post 2 → M2: 5 |
| 141 | +- Post 3 → M3: 5 |
| 142 | +- Post 4 → M6: 4 |
| 143 | + |
| 144 | +**Total minimum cost = 6 + 5 + 5 + 4 = 20** |
| 145 | + |
| 146 | +--- |
| 147 | + |
| 148 | +## **Final Assignment Table** |
| 149 | + |
| 150 | +| Post | Assigned Doctor | Cost | |
| 151 | +| :-- | :-- | :-- | |
| 152 | +| 1 | M1 | 6 | |
| 153 | +| 2 | M2 | 5 | |
| 154 | +| 3 | M3 | 5 | |
| 155 | +| 4 | M6 | 4 | |
| 156 | +| **Total** | | **20** | |
| 157 | + |
| 158 | + |
| 159 | +--- |
| 160 | + |
| 161 | +## **How to Solve in Excel with Solver** |
| 162 | + |
| 163 | +1. **Enter the cost matrix (including dummy rows) in A1:G7.** |
| 164 | +2. **Create a 6x6 assignment matrix (binary variables) in H2:M7.** |
| 165 | +3. **Objective function (cell O1):** |
| 166 | +`=SUMPRODUCT(B2:G7, H2:M7)` |
| 167 | +4. **Constraints:** |
| 168 | + - Each post (row) assigned to exactly one doctor: `=SUM(H2:M2)` = 1 (for each row) |
| 169 | + - Each doctor (column) assigned to at most one post: `=SUM(H2:H7)` ≤ 1 (for each column) |
| 170 | + - All variables binary (0 or 1) |
| 171 | +5. **Set Solver to minimize O1.** |
| 172 | + |
| 173 | +--- |
| 174 | + |
| 175 | +**This is your step-by-step assignment problem solution for Exercise 3, with all the necessary details for modeling, Hungarian method, and Excel Solver.** |
| 176 | + |
| 177 | + |
| 178 | + |
0 commit comments