@@ -1527,44 +1527,26 @@ The **Assignment Problem** aims to allocate *n* tasks to *n* agents (machines, w
15271527
15281528### [ ** Step 2] ( ) : Subtract Column Minimums**
15291529
1530- #### Subtract the minimum value in each column from all elements in that column ] ( ) .
1530+ ### Problem Recap
15311531
1532- - Col 1 min: 0 → [ 0, 0, 3]
1533- - Col 2 min: 0 → [ 2, 2, 0]
1534- - Col 3 min: 1 → [ 0, 0, 1]
1535-
1536- <br >
1537-
1538- #### [ ** Matrix after column subtraction:** ] ( )
1539-
1540- | | M1 | M2 | M3 |
1541- | ---------| ----| ----| ----|
1542- | Task 1 | 0 | 2 | 0 |
1543- | Task 2 | 0 | 2 | 0 |
1544- | Task 3 | 3 | 0 | 1 |
1545-
1546- <br >
1547-
1548- ### [ ** Step 3] ( ) : Assignment (Cover Zeros)**
1549-
1550- - Cover all zeros using the minimum number of lines (rows or columns).
1551- - Assign tasks to machines where possible (one zero per row/column).
1552-
1553- ** Optimal Assignment:**
1554- - Task 1 → Machine 1 (cost 2)
1555- - Task 2 → Machine 3 (cost 2)
1556- - Task 3 → Machine 2 (cost 2)
1532+ - ** 3 tasks** must be assigned to ** 3 machines** .
1533+ - Each task can be done by any machine, but with different costs.
1534+ - Each task must be assigned to exactly one machine, and each machine to exactly one task.
1535+ - ** Goal:** Minimize total assignment cost.
15571536
1537+ ### Cost Table
15581538
1559- ### *** Total Minimum Cost = [ 2 + 2 + 2 = 6] ( ) ***
1560-
1561- <br >
1539+ | | Machine 1 | Machine 2 | Machine 3 |
1540+ | ---------| -----------| -----------| -----------|
1541+ | Task 1 | 2 | 4 | 3 |
1542+ | Task 2 | 1 | 3 | 2 |
1543+ | Task 3 | 5 | 2 | 4 |
15621544
1563- ## 2. Excel Solver Step-by-Step
1545+ ---
15641546
1565- ### ** A. Excel Table Setup **
1547+ ## Step 1: Set Up the Excel Spreadsheet
15661548
1567- #### 1. ** Cost Table (A1 : D4 ) **
1549+ ### 1. Enter the Cost Matrix
15681550
15691551| | B | C | D |
15701552| -----| ------| ------| ------|
@@ -1573,7 +1555,9 @@ The **Assignment Problem** aims to allocate *n* tasks to *n* agents (machines, w
15731555| T2 | 1 | 3 | 2 |
15741556| T3 | 5 | 2 | 4 |
15751557
1576- #### 2. ** Decision Variables Table (F1: I4 )**
1558+ - Place this table in cells ** B2: D4 ** .
1559+
1560+ ### 2. Create the Decision Variable Table
15771561
15781562| | G | H | I |
15791563| -----| ------| ------| ------|
@@ -1582,42 +1566,98 @@ The **Assignment Problem** aims to allocate *n* tasks to *n* agents (machines, w
15821566| T2 | x21 | x22 | x23 |
15831567| T3 | x31 | x32 | x33 |
15841568
1585- Each cell is 0 or 1 (to be filled by Solver).
1569+ - Place this table in ** G2: I4 ** .
1570+ - These cells will be filled with 0 or 1 by the Solver (1 = assigned, 0 = not assigned).
15861571
1587- < br >
1572+ ### 3. Calculate the Total Cost
15881573
1589- #### 3. ** Objective Function (K2) **
1574+ In cell ** K2 ** , enter:
15901575
1591-
1592- ```
1576+ ``` bash
15931577=SUMPRODUCT(B2:D4, G2:I4)
15941578```
15951579
1596- #### 4. ** Row Constraints (One task per machine) **
1580+ This formula multiplies each assignment by its cost and sums the total.
15971581
1598- - J2: ` =SUM(G2:I2) ` (should be 1)
1599- - J3: ` =SUM(G3:I3) ` (should be 1)
1600- - J4: ` =SUM(G4:I4) ` (should be 1)
1582+ ### 4. Add Row and Column Sums for Constraints
16011583
1602- < br >
1584+ #### Row Sums (Each Task Assigned Once)
16031585
1604- #### 5. ** Column Constraints (One machine per task)**
1586+ - In ** J2** : ` =SUM(G2:I2) `
1587+ - In ** J3** : ` =SUM(G3:I3) `
1588+ - In ** J4** : ` =SUM(G4:I4) `
1589+
1590+ #### Column Sums (Each Machine Assigned Once)
1591+
1592+ - In ** G5** : ` =SUM(G2:G4) `
1593+ - In ** H5** : ` =SUM(H2:H4) `
1594+ - In ** I5** : ` =SUM(I2:I4) `
1595+
1596+ ---
1597+
1598+ ## Step 2: Configure Excel Solver
1599+
1600+ 1 . ** Go to** : Data > Solver
1601+ 2 . ** Set Objective** :
1602+ - Set ** K2** (total cost) to ** Minimize** .
1603+ 3 . ** By Changing Variable Cells** :
1604+ - Select ** G2: I4 ** .
1605+ 4 . ** Add Constraints** :
1606+ - ** J2: J4 = 1** (each task assigned once)
1607+ - ** G5: I5 = 1** (each machine assigned once)
1608+ - ** G2: I4 = binary** (only 0 or 1 allowed)
1609+ 5 . ** Choose Solving Method** :
1610+ - Use "Simplex LP" or "GRG Nonlinear" (either works for this size).
1611+ 6 . ** Click Solve** .
1612+
1613+ ---
1614+
1615+ ## Step 3: Solution Example
1616+
1617+ After running Solver, you should get a solution like:
1618+
1619+ | | M1 | M2 | M3 | Row Sum |
1620+ | -----| ----| ----| ----| ---------|
1621+ | T1 | 1 | 0 | 0 | 1 |
1622+ | T2 | 0 | 0 | 1 | 1 |
1623+ | T3 | 0 | 1 | 0 | 1 |
1624+ | Col Sum| 1| 1 | 1 | |
1625+
1626+ - ** Task 1 → Machine 1** (cost 2)
1627+ - ** Task 2 → Machine 3** (cost 2)
1628+ - ** Task 3 → Machine 2** (cost 2)
1629+
1630+ ** Total minimum cost:** 6
1631+
1632+ ---
1633+
1634+ ## Excel Table and Formula Summary
1635+
1636+ | | M1 | M2 | M3 | Row Sum |
1637+ | -----| ------| ------| ------| ---------|
1638+ | T1 | G2 | H2 | I2 | J2 |
1639+ | T2 | G3 | H3 | I3 | J3 |
1640+ | T3 | G4 | H4 | I4 | J4 |
1641+ | Col Sum| G5 | H5 | I5 | |
1642+
1643+ - ** Total Cost:** ` =SUMPRODUCT(B2:D4, G2:I4) `
1644+ - ** Row Sums:** ` =SUM(G2:I2) ` , etc.
1645+ - ** Column Sums:** ` =SUM(G2:G4) ` , etc.
1646+
1647+ ---
1648+
1649+ ## Result (in English)
1650+
1651+ ** The optimal assignment is:**
1652+ - Task 1 to Machine 1 (cost 2)
1653+ - Task 2 to Machine 3 (cost 2)
1654+ - Task 3 to Machine 2 (cost 2)
1655+
1656+ ** Total minimum cost:** 6
16051657
1606- - G5: ` =SUM(G2:G4) ` (should be 1)
1607- - H5: ` =SUM(H2:H4) ` (should be 1)
1608- - I5: ` =SUM(I2:I4) ` (should be 1)
16091658
1610- <br >
16111659
1612- ### ** B. Solver Configuration**
16131660
1614- - ** Set Objective:** K2 (Minimize)
1615- - ** By Changing Variables:** G2: I4
1616- - ** Add Constraints:**
1617- - J2: J4 = 1
1618- - G5: I5 = 1
1619- - G2: I4 = binary
1620-
16211661<br >
16221662
16231663
0 commit comments