@@ -333,7 +333,9 @@ The **graphical method** for solving simple linear programming (LP) problems inv
333333
334334### [ Key] ( ) Concepts:
335335
336- ** [ Decision Variables] ( ) :** These are the variables that we want to determine the values of to optimize the *** [ OBJECTIVE FUNCTION] ( ) *** (e.g.):
336+ <br ><br >
337+
338+ - ** [ Decision Variables] ( ) :** These are the variables that we want to determine the values of to optimize the *** [ OBJECTIVE FUNCTION] ( ) *** (e.g.):
337339
338340<br >
339341
@@ -363,29 +365,34 @@ $\(x_1\)$ and $\(x_2\)$
363365
364366- ** [ Constraints] ( ) :** These are linear inequalities or equalities that restrict the values the decision variables can take.
365367
366- <br >
367368
368- - [ Equality constraint] ( ) :
369+ <br ><br >
370+
371+ - ** [ Equality constraint] ( ) :**
369372
370373<br >
371374
372- $$ a_{i1}x_1 + a_{i2}x_2 $$ = $$ b_i $$
375+ $a_ {i1}x_1 + a_ {i2}x_2$ = $b_i$
376+
377+ <br >
373378
374379 ``` latex
375380 a_{i1}x_1 + a_{i2}x_2 = b_i
376381 ```
377382
378- <br >
383+ <br >< br >
379384
380385
381- - [ Less than or equal to constraint] ( ) :
386+ - ** [ Less than or equal to constraint] ( ) :**
382387
383- $$ a_{i1}x_1 $$ + $ $a_{i2}x_2 \leq b_i $$
388+ $a_ {i1}x_1$$ + $a_{i2}x_2 \leq b_i $$
384389
385390 ``` latex
386391 a_{i1}x_1 + a_{i2}x_2 \leq b_i
387392 ```
388- <br >
393+
394+ <br ><br >
395+
389396
390397 - [ Greater than or equal to constraint] ( ) :
391398
@@ -437,7 +444,8 @@ $\(x_1\)$ and $\(x_2\)$
4374445 . ** [ Determine the Optimal Solution] ( ) :**
438445
439446 * For a ** maximization** problem, the vertex that yields the ** largest** value of the objective function is the optimal solution [ 1, 6] .
440- * For a ** minimization** problem, the vertex that yields the ** smallest** value of the objective function is the optimal solution [ 2, 7] .
447+
448+ * For a ** minimization** problem, the vertex that yields the ** smallest** value of the objective function is the optimal solution [ 2, 7] .
441449
442450
443451<br ><br >
0 commit comments