@@ -28,7 +28,7 @@ To define the ode system in Julia, we use `ModelingToolkit.jl`.
2828
2929We first define the parameters, variables, differential equations and the output equations.
3030
31- ``` @example SI
31+ ``` julia
3232using StructuralIdentifiability, ModelingToolkit
3333using ModelingToolkit: t_nounits as t, D_nounits as D
3434
6666
6767After that, we are ready to check the system for local identifiability:
6868
69- ``` @example SI
69+ ``` julia
7070# query local identifiability
7171# we pass the ode-system
7272local_id_all = assess_local_identifiability (de, p = 0.99 )
@@ -76,7 +76,7 @@ We can see that all unknowns (except $x_7$) and all parameters are locally ident
7676
7777Let's try to check specific parameters and their combinations
7878
79- ``` @example SI
79+ ``` julia
8080to_check = [de. k5, de. k7, de. k10 / de. k9, de. k5 + de. k6]
8181local_id_some = assess_local_identifiability (de, funcs_to_check = to_check, p = 0.99 )
8282```
@@ -103,7 +103,7 @@ We will run a global identifiability check on this enzyme dynamics[^3] model. We
103103
104104Global identifiability needs information about local identifiability first, but the function we chose here will take care of that extra step for us.
105105
106- ``` @example SI2
106+ ``` julia
107107using StructuralIdentifiability, ModelingToolkit
108108using ModelingToolkit: t_nounits as t, D_nounits as D
109109
@@ -144,7 +144,7 @@ We can see that only parameters `a, g` are unidentifiable, and everything else c
144144
145145Let us consider the same system but with two inputs, and we will find out identifiability with probability ` 0.9 ` for parameters ` c ` and ` b ` :
146146
147- ``` @example SI3
147+ ``` julia
148148using StructuralIdentifiability, ModelingToolkit
149149using ModelingToolkit: t_nounits as t, D_nounits as D
150150
0 commit comments