@@ -71,10 +71,10 @@ function SciMLBase.__solve(prob::NonlinearProblem, alg::SimpleTrustRegion, args.
7171 termination_condition)
7272
7373 # Set default trust region radius if not specified by user.
74- Δₘₐₓ == 0 && (Δₘₐₓ = max (norm (fx), maximum (x) - minimum (x)))
74+ Δₘₐₓ == 0 && (Δₘₐₓ = max (NONLINEARSOLVE_DEFAULT_NORM (fx), maximum (x) - minimum (x)))
7575 Δ == 0 && (Δ = Δₘₐₓ / 11 )
7676
77- fₖ = 0.5 * norm (fx)^ 2
77+ fₖ = 0.5 * NONLINEARSOLVE_DEFAULT_NORM (fx)^ 2
7878 H = ∇f' * ∇f
7979 g = _restructure (x, ∇f' * _vec (fx))
8080 shrink_counter = 0
@@ -93,7 +93,7 @@ function SciMLBase.__solve(prob::NonlinearProblem, alg::SimpleTrustRegion, args.
9393
9494 fx = __eval_f (prob, fx, x)
9595
96- fₖ₊₁ = norm (fx)^ 2 / T (2 )
96+ fₖ₊₁ = NONLINEARSOLVE_DEFAULT_NORM (fx)^ 2 / T (2 )
9797
9898 # Compute the ratio of the actual to predicted reduction.
9999 @bb Hδ = H × vec (δ)
@@ -120,7 +120,7 @@ function SciMLBase.__solve(prob::NonlinearProblem, alg::SimpleTrustRegion, args.
120120 fx, ∇f = value_and_jacobian (alg. autodiff, prob. f, fx, x, prob. p, jac_cache; J)
121121
122122 # Update the trust region radius.
123- (r > η₃) && (norm (δ) ≈ Δ) && (Δ = min (t₂ * Δ, Δₘₐₓ))
123+ (r > η₃) && (NONLINEARSOLVE_DEFAULT_NORM (δ) ≈ Δ) && (Δ = min (t₂ * Δ, Δₘₐₓ))
124124 fₖ = fₖ₊₁
125125
126126 @bb H = transpose (∇f) × ∇f
@@ -138,12 +138,12 @@ function dogleg_method!!(cache, J, f, g, Δ)
138138 @bb δN .= _restructure (δN, J \ _vec (f))
139139 @bb δN .*= - 1
140140 # Test if the full step is within the trust region.
141- (norm (δN) ≤ Δ) && return δN
141+ (NONLINEARSOLVE_DEFAULT_NORM (δN) ≤ Δ) && return δN
142142
143143 # Calcualte Cauchy point, optimum along the steepest descent direction.
144144 @bb δsd .= g
145145 @bb @. δsd *= - 1
146- norm_δsd = norm (δsd)
146+ norm_δsd = NONLINEARSOLVE_DEFAULT_NORM (δsd)
147147 if (norm_δsd ≥ Δ)
148148 @bb @. δsd *= Δ / norm_δsd
149149 return δsd
0 commit comments