You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: index.html
+50-48Lines changed: 50 additions & 48 deletions
Original file line number
Diff line number
Diff line change
@@ -100,54 +100,56 @@ <h3 class="mb-0">Postdocs and PhD students</h3>
100
100
<sectionclass="resume-section" id="publications">
101
101
<divclass="resume-section-content">
102
102
<h2class="mb-5">Recent Publications</h2>
103
-
<h3class="mb-0">2022</h3>
104
-
<ul>
105
-
<li>M. Ceccarello, J. Gamper <strong>Fast and Scalable Mining of Time Series Motifs with Probabilistic Guarantees</strong>. <spanstyle="font-style:italic">Proc. of the VLDB Endow.</span>.</li>
106
-
<li>M. Aumüller, S. Har-Peled, S. Mahabadi, R. Pagh, F. Silvestri <strong>Sampling near neighbors in search for fairness</strong>. <spanstyle="font-style:italic">Communications of the ACM</span>.</li>
107
-
<li>L. Pellegrina, F. Vandin. <strong>Discovering significant evolutionary trajectories in cancer phylogenies</strong>. <spanstyle="font-style:italic">Bioinformatics</span>.</li>
108
-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci <strong>k-Center Clustering with Outliers in Sliding Windows</strong>. <spanstyle="font-style:italic">Algorithms</span>.</li>
109
-
<li>A. Tonon, F. Vandin. <strong>gRosSo: mining statistically robust patterns from a sequence of datasets</strong>. <spanstyle="font-style:italic">Knowledge and Information Systems</span>.</li>
110
-
<li>L. Pellegrina, C. Cousins, F. Vandin, M. Riondato. <strong>MCRapper: Monte-Carlo Rademacher averages for poset families and approximate pattern mining</strong>. <spanstyle="font-style:italic">ACM Transactions on Knowledge Discovery from Data (TKDD)</span>.</li>
111
-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci. <strong>Adaptive k-center and diameter estimation in sliding windows</strong>. <spanstyle="font-style:italic">International Journal of Data Science and Analytics</span>.</li>
112
-
<li>D. Santoro, L. Pellegrina, M. Comin, F. Vandin. <strong>SPRISS: approximating frequent k-mers by sampling reads, and applications</strong>. <spanstyle="font-style:italic">Bioinformatics</span>.</li>
113
-
<li>F. Vandin. <strong> Evaluating sampled metrics is challenging</strong>. <spanstyle="font-style:italic">Communications of the ACM</span>.</li>
114
-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci<strong>Adaptive k-center and diameter estimation in sliding windows</strong>. <spanstyle="font-style:italic">International Journal of Data Science and Analytics</span>.</li>
115
-
<li>M. Aumüller, S. Har-Peled, S. Mahabadi, R. Pagh, F. Silvestri. <strong> Sampling a Near Neighbor in High Dimensions—Who is the Fairest of Them All?</strong>. <spanstyle="font-style:italic">ACM Transactions on Database Systems (TODS)</span>.</li>
116
-
<li>D. Buffelli, F. Vandin. <strong>The Impact of Global Structural Information in Graph Neural Networks Applications</strong>. <spanstyle="font-style:italic">Data</span>.</li>
117
-
<li>D. Simionato, F. Vandin. <strong>Bounding the Family-Wise Error Rate in Local Causal Discovery using Rademacher Averages</strong>. <spanstyle="font-style:italic">ECML-PKDD</span>.</li>
118
-
<li>D. Buffelli, P. Liò, F. Vandin <strong>SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks</strong>. <spanstyle="font-style:italic">NeurIPS</span>.</li>
119
-
<li>D. Buffelli, F. Vandin. <strong>Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach</strong>. <spanstyle="font-style:italic">IJCNN</span>.</li>
120
-
<li>A. Guiotto, G. Bortolami, A. Ciniglio, F. Spolaor, G. Guarneri, A. Avogaro, F. Cibin, F. Silvestri, Z. Sawacha. <strong>Machine learning approach to diabetic foot risk classification with biomechanics data</strong>. <spanstyle="font-style:italic">Gait & Posture</span>.</li>
121
-
</ul>
122
-
<h3class="mb-0">2021</h3>
123
-
<ul>
124
-
<li>D. Santoro, L. Pellegrina, F. Vandin <strong>SPRISS: Approximating Frequent k-mers by Sampling Reads, and Applications</strong>. <spanstyle="font-style:italic">RECOMB</span>.</li>
125
-
<li>A. Tonon, F. Vandin <strong>CASPITA: Mining Statistically Significant Paths in Time Series Data from an Unknown Network</strong>. <spanstyle="font-style:italic">ICDM</span>.</li>
126
-
<li>R. Chowdhury, F. Silvestri, F. Vella <strong>Algorithm Design for Tensor Units</strong>. <spanstyle="font-style:italic">Euro-Par</span>.</li>
127
-
<li>I. Sarpe, F. Vandin <strong>odeN: Simultaneous Approximation of Multiple Motif Counts in Large Temporal Networks</strong>. <spanstyle="font-style:italic">CIKM</span>.</li>
128
-
<li>D. Buffelli, F. Vandin <strong>Attention-based deep learning framework for human activity recognition with user adaptation</strong>. <spanstyle="font-style:italic">IEEE Sensors Journal</span>.</li>
129
-
<li>M. Aumuller, S. Har-Peled, S. Mahabadi, R. Pagh, F.Silvestri <strong>Fair near neighbor search via sampling</strong>. <spanstyle="font-style:italic">ACM SIGMOD Record</span>.</li>
130
-
<li>M. Comin, B. Di Camillo, C. Pizzi, F. Vandin <strong>Comparison of microbiome samples: methods and computational challenges</strong>. <spanstyle="font-style:italic">Briefings in Bioinformatics</span>.</li>
131
-
<li>E. Costa, F. Silvestri <strong>On the Bike Spreading Problem</strong>. <spanstyle="font-style:italic">ATMOS</span>.</li>
132
-
<li>I. Sarpe, F. Vandin <strong>Presto: Simple and scalable sampling techniques for the rigorous approximation of temporal motif counts</strong>. <spanstyle="font-style:italic">SIAM SDM</span>.</li>
133
-
<li>F. Altieri, A. Pietracaprina, G. Pucci, F. Vandin <strong>Scalable distributed approximation of internal measures for clustering evaluation</strong>. <spanstyle="font-style:italic">SIAM SDM</span>.</li>
103
+
<!-- PUBS -->
104
+
<h3class="mb-0">2023</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1007/s10115-022-01800-7">caSPiTa: mining statistically significant paths in time series data from an unknown network.</a></emph> Knowl. Inf. Syst.</li>
105
+
<li>Shiyuan Deng, Francesco Silvestri, Yufei Tao <emph><ahref="https://doi.org/10.4230/LIPIcs.ICDT.2023.4">Enumerating Subgraphs of Constant Sizes in External Memory.</a></emph> ICDT</li></ul>
<li>A. Guiotto, G. Bortolami, A. Ciniglio, F. Spolaor, G. Guarneri, A. Avogaro, F. Cibin, F. Silvestri, Z. Sawacha. <emph><ahref="https://www.sciencedirect.com/science/article/abs/pii/S0966636222005537">Machine learning approach to diabetic foot risk classification with biomechanics data</a></emph> Gait & Posture</li>
108
+
<li>Adam Charane, Matteo Ceccarello, Anton Dignös, Johann Gamper <emph><ahref="https://doi.org/10.1007/978-3-031-09850-5_17">Efficient Computation of All-Window Length Correlations.</a></emph> DB&IS</li>
109
+
<li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1007/s10115-022-01689-2">gRosSo: mining statistically robust patterns from a sequence of datasets.</a></emph> Knowl. Inf. Syst.</li>
110
+
<li>Dario Simionato, Fabio Vandin <emph><ahref="https://doi.org/10.1007/978-3-031-26419-1_16">Bounding the Family-Wise Error Rate in Local Causal Discovery Using Rademacher Averages.</a></emph> ECML/PKDD</li>
111
+
<li>Davide Buffelli, Fabio Vandin <emph><ahref="https://doi.org/10.1109/IJCNN55064.2022.9892010">Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach.</a></emph> IJCNN</li>
112
+
<li>Davide Buffelli, Fabio Vandin <emph><ahref="https://doi.org/10.3390/data7010010">The Impact of Global Structural Information in Graph Neural Networks Applications.</a></emph> Data</li>
113
+
<li>Davide Buffelli, Pietro Lió, Fabio Vandin <emph><ahref="https://papers.nips.cc/paper_files/paper/2022/hash/ceeb3fa5be458f08fbb12a5bb783aac8-Abstract-Conference.html">SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks</a></emph> NeurIPS</li>
114
+
<li>Diego Santoro, Ilie Sarpe <emph><ahref="https://doi.org/10.1145/3485447.3512204">ONBRA: Rigorous Estimation of the Temporal Betweenness Centrality in Temporal Networks.</a></emph> WWW</li>
115
+
<li>Diego Santoro, Leonardo Pellegrina, Matteo Comin, Fabio Vandin <emph><ahref="https://doi.org/10.1093/bioinformatics/btac180">SPRISS: approximating frequent k-mers by sampling reads, and applications.</a></emph> Bioinform.</li>
116
+
<li>Johann Gamper, Matteo Ceccarello, Anton Dignös <emph><ahref="https://doi.org/10.1007/978-3-031-15740-0_5">What's New in Temporal Databases?</a></emph> ADBIS</li>
117
+
<li>Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato <emph><ahref="https://doi.org/10.1145/3532187">MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining.</a></emph> ACM Trans. Knowl. Discov. Data</li>
118
+
<li>Leonardo Pellegrina, Fabio Vandin <emph><ahref="https://pubmed.ncbi.nlm.nih.gov/36124798/">Discovering significant evolutionary trajectories in cancer phylogenies</a></emph> Bioinformatics</li>
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3502867">Sampling a Near Neighbor in High Dimensions - Who is the Fairest of Them All?</a></emph> ACM Trans. Database Syst.</li>
121
+
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3543667">Sampling near neighbors in search for fairness.</a></emph> Commun. ACM</li>
122
+
<li>Matteo Ceccarello, Johann Gamper <emph><ahref="https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf">Fast and Scalable Mining of Time Series Motifs with Probabilistic Guarantees.</a></emph> Proc. VLDB Endow.</li>
123
+
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1007/s41060-022-00318-z">Adaptive k-center and diameter estimation in sliding windows.</a></emph> Int. J. Data Sci. Anal.</li>
124
+
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.3390/a15020052">k-Center Clustering with Outliers in Sliding Windows.</a></emph> Algorithms</li>
125
+
<li>Paolo Sylos Labini, Massimo Bernaschi, Werner Nutt, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1109/IA356718.2022.00009">Blocking Sparse Matrices to Leverage Dense-Specific Multiplication.</a></emph> IA3@SC</li></ul>
126
+
<h3class="mb-0">2021</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1109/ICDM51629.2021.00075">CASPITA: Mining Statistically Significant Paths in Time Series Data from an Unknown Network.</a></emph> ICDM</li>
127
+
<li>Davide Buffelli, Fabio Vandin <emph><ahref="https://ieeexplore.ieee.org/document/9382331">Attention-Based Deep Learning Framework for Human Activity Recognition With User Adaptation</a></emph> IEEE Sensors</li>
128
+
<li>Diego Santoro, Leonardo Pellegrina, Fabio Vandin <emph><ahref="https://arxiv.org/abs/2101.07117">SPRISS: Approximating Frequent k-mers by Sampling Reads, and Applications</a></emph> RECOMB</li>
129
+
<li>Elia Costa, Francesco Silvestri <emph><ahref="https://doi.org/10.4230/OASIcs.ATMOS.2021.5">On the Bike Spreading Problem.</a></emph> ATMOS</li>
130
+
<li>Federico Altieri, Andrea Pietracaprina, Geppino Pucci, Fabio Vandin <emph><ahref="https://doi.org/10.1137/1.9781611976700.73">Scalable Distributed Approximation of Internal Measures for Clustering Evaluation.</a></emph> SDM</li>
131
+
<li>Ilie Sarpe, Fabio Vandin <emph><ahref="https://doi.org/10.1137/1.9781611976700.17">PRESTO: Simple and Scalable Sampling Techniques for the Rigorous Approximation of Temporal Motif Counts.</a></emph> SDM</li>
132
+
<li>Ilie Sarpe, Fabio Vandin <emph><ahref="https://doi.org/10.1145/3459637.3482459">odeN: Simultaneous Approximation of Multiple Motif Counts in Large Temporal Networks.</a></emph> CIKM</li>
133
+
<li>Martin Aumüller, Matteo Ceccarello <emph><ahref="https://doi.org/10.1016/j.is.2021.101807">The role of local dimensionality measures in benchmarking nearest neighbor search.</a></emph> Inf. Syst.</li>
134
+
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3471485.3471496">Fair near neighbor search via sampling.</a></emph> SIGMOD Rec.</li>
135
+
<li>Matteo Comin, Barbara Di Camillo, Cinzia Pizzi, Fabio Vandin <emph><ahref="https://doi.org/10.1093/bib/bbaa121">Comparison of microbiome samples: methods and computational challenges.</a></emph> Briefings Bioinform.</li>
136
+
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1007/978-3-030-85665-6_22">Algorithm Design for Tensor Units.</a></emph> Euro-Par</li></ul>
137
+
<h3class="mb-0">2020</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.1109/ICDM50108.2020.00064">GRosSo: Mining Statistically Robust Patterns from a Sequence of Datasets.</a></emph> ICDM</li>
138
+
<li>Diego Santoro, Andrea Tonon, Fabio Vandin <emph><ahref="https://doi.org/10.3390/a13050123">Mining Sequential Patterns with VC-Dimension and Rademacher Complexity.</a></emph> Algorithms</li>
139
+
<li>Leonardo Pellegrina, Cinzia Pizzi, Fabio Vandin <emph><ahref="https://doi.org/10.1089/cmb.2019.0314">Fast Approximation of Frequent k-Mers and Applications to Metagenomics.</a></emph> J. Comput. Biol.</li>
140
+
<li>Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato <emph><ahref="https://doi.org/10.1145/3394486.3403267">MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining.</a></emph> KDD</li>
141
+
<li>Leonardo Pellegrina, Fabio Vandin <emph><ahref="https://doi.org/10.1007/s10618-020-00687-8">Efficient mining of the most significant patterns with permutation testing.</a></emph> Data Min. Knowl. Discov.</li>
142
+
<li>Martin Aumüller, Matteo Ceccarello <emph><ahref="https://doi.org/10.1007/978-3-030-60936-8_31">Running Experiments with Confidence and Sanity.</a></emph> SISAP</li>
143
+
<li>Martin Aumüller, Rasmus Pagh, Francesco Silvestri <emph><ahref="https://doi.org/10.1145/3375395.3387648">Fair Near Neighbor Search: Independent Range Sampling in High Dimensions.</a></emph> PODS</li>
144
+
<li>Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1145/3402448">A General Coreset-Based Approach to Diversity Maximization under Matroid Constraints.</a></emph> ACM Trans. Knowl. Discov. Data</li>
145
+
<li>Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, Eli Upfal <emph><ahref="https://doi.org/10.3390/a13090216">Distributed Graph Diameter Approximation.</a></emph> Algorithms</li>
146
+
<li>Matteo Riondato, Fabio Vandin <emph><ahref="https://doi.org/10.1145/3385653">MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension.</a></emph> ACM Trans. Knowl. Discov. Data</li>
147
+
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><ahref="https://doi.org/10.1109/DSAA49011.2020.00032">Dimensionality-adaptive k-center in sliding windows.</a></emph> DSAA</li>
148
+
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><ahref="https://doi.org/10.1145/3350755.3400252">A Computational Model for Tensor Core Units.</a></emph> SPAA</li>
149
+
<li>Thomas D. Ahle, Francesco Silvestri <emph><ahref="https://doi.org/10.1007/978-3-030-60936-8_6">Similarity Search with Tensor Core Units.</a></emph> SISAP</li>
150
+
<li>Yoo-Ah Kim, D. Wojtowicz, R. Sarto Basso, I. Sason, W. Robinson, D. S. Hochbaum, M. Leiserson, R. Sharan, F. Vandin, T. Przytycka. <emph><ahref="https://pubmed.ncbi.nlm.nih.gov/32471470/">Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer</a></emph> Genome Medicine</li></ul>
134
151
135
-
</ul>
136
-
<h3class="mb-0">2020</h3>
137
-
<ul>
138
-
<li>L. Pellegrina, C. Cousins, F. Vandin, M. Riondato <strong>MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining</strong>. <spanstyle="font-style:italic">ACM KDD</span>.</li>
139
-
<li>Yoo-Ah Kim, D. Wojtowicz, R. Sarto Basso, I. Sason, W. Robinson, D. S. Hochbaum, M. Leiserson, R. Sharan, F. Vandin, T. Przytycka.<strong> Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer</strong>. <spanstyle="font-style:italic">Genome Medicine</span>.</li>
140
-
<li>T. D. Ahle, F. Silvestri. <strong>Similarity search with tensor core units</strong>. <spanstyle="font-style:italic">SISAP</span>.</li>
141
-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci.<strong> Dimensionality-adaptive k-center in sliding windows</strong>. <spanstyle="font-style:italic">DSAA</span>.</li>
142
-
<li>Yoo-Ah Kim, R. Sarto Basso, D. Wojtowicz, A. S. Liu, D. S. Hochbaum, F. Vandin, T. Przytycka.<strong> Identifying drug sensitivity subnetworks with netphix</strong>. <spanstyle="font-style:italic">iScience</span>.</li>
143
-
<li>L. Pellegrina, F. Vandin. <strong>Efficient Mining of the Most Significant Patterns with Permutation Testing</strong>. <spanstyle="font-style:italic">Data Mining & Knowledge Discovery</span>.</li>
144
-
<li>M. Aumüller, R. Pagh, F. Silvestri. <strong>Fair near neighbor search: Independent range sampling in high dimensions</strong>. <spanstyle="font-style:italic">PODS</span>.</li>
145
-
<li>M. Ceccarello, A. Pietracaprina, G. Pucci, E. Upfal. <strong>Distributed graph diameter approximation</strong>. <spanstyle="font-style:italic">Algorithms</span>.</li>
146
-
<li>L. Pellegrina, C. Pizzi, F. Vandin. <strong>Fast Approximation of Frequent k-mers and Applications to Metagenomics", </strong>. <spanstyle="font-style:italic">Journal of Computational Biology</span>.</li>
147
-
<li>R. Chowdhury, F. Silvestri, F. Vella. <strong>Brief announcement: a computational model for tensor core units</strong>. <spanstyle="font-style:italic">SPAA</span>.</li>
148
-
<li>M. Ceccarello, A. Pietracaprina, G. Pucci <strong>A general coreset-based approach to diversity maximization under matroid constraints</strong>. <spanstyle="font-style:italic">ACM Transactions on Knowledge Discovery from Data (TKDD)</span>.</li>
149
-
<li>D. Santoro, A. Tonon, F. Vandin.<strong> Mining sequential patterns with VC-dimension and Rademacher complexity</strong>. <spanstyle="font-style:italic">Algorithms</span>.</li>
0 commit comments