Skip to content

Commit 8c1a051

Browse files
committed
Automatically update papers from DBLP!
1 parent ad9c88b commit 8c1a051

File tree

5 files changed

+233
-48
lines changed

5 files changed

+233
-48
lines changed

Justfile

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
# Update the papers fetching data from DBLP
2+
update:
3+
nu update-papers.nu
4+

index.html

Lines changed: 50 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -100,54 +100,56 @@ <h3 class="mb-0">Postdocs and PhD students</h3>
100100
<section class="resume-section" id="publications">
101101
<div class="resume-section-content">
102102
<h2 class="mb-5">Recent Publications</h2>
103-
<h3 class="mb-0">2022</h3>
104-
<ul>
105-
<li>M. Ceccarello, J. Gamper <strong>Fast and Scalable Mining of Time Series Motifs with Probabilistic Guarantees</strong>. <span style="font-style:italic">Proc. of the VLDB Endow.</span>.</li>
106-
<li>M. Aumüller, S. Har-Peled, S. Mahabadi, R. Pagh, F. Silvestri <strong>Sampling near neighbors in search for fairness</strong>. <span style="font-style:italic">Communications of the ACM</span>.</li>
107-
<li>L. Pellegrina, F. Vandin. <strong>Discovering significant evolutionary trajectories in cancer phylogenies</strong>. <span style="font-style:italic">Bioinformatics</span>.</li>
108-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci <strong>k-Center Clustering with Outliers in Sliding Windows</strong>. <span style="font-style:italic">Algorithms</span>.</li>
109-
<li>A. Tonon, F. Vandin. <strong>gRosSo: mining statistically robust patterns from a sequence of datasets</strong>. <span style="font-style:italic">Knowledge and Information Systems</span>.</li>
110-
<li>L. Pellegrina, C. Cousins, F. Vandin, M. Riondato. <strong>MCRapper: Monte-Carlo Rademacher averages for poset families and approximate pattern mining</strong>. <span style="font-style:italic">ACM Transactions on Knowledge Discovery from Data (TKDD)</span>.</li>
111-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci. <strong>Adaptive k-center and diameter estimation in sliding windows</strong>. <span style="font-style:italic">International Journal of Data Science and Analytics</span>.</li>
112-
<li>D. Santoro, L. Pellegrina, M. Comin, F. Vandin. <strong>SPRISS: approximating frequent k-mers by sampling reads, and applications</strong>. <span style="font-style:italic">Bioinformatics</span>.</li>
113-
<li>F. Vandin. <strong> Evaluating sampled metrics is challenging</strong>. <span style="font-style:italic">Communications of the ACM</span>.</li>
114-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci<strong>Adaptive k-center and diameter estimation in sliding windows</strong>. <span style="font-style:italic">International Journal of Data Science and Analytics</span>.</li>
115-
<li>M. Aumüller, S. Har-Peled, S. Mahabadi, R. Pagh, F. Silvestri. <strong> Sampling a Near Neighbor in High Dimensions—Who is the Fairest of Them All?</strong>. <span style="font-style:italic">ACM Transactions on Database Systems (TODS)</span>.</li>
116-
<li>D. Buffelli, F. Vandin. <strong>The Impact of Global Structural Information in Graph Neural Networks Applications</strong>. <span style="font-style:italic">Data</span>.</li>
117-
<li>D. Simionato, F. Vandin. <strong>Bounding the Family-Wise Error Rate in Local Causal Discovery using Rademacher Averages</strong>. <span style="font-style:italic">ECML-PKDD</span>.</li>
118-
<li>D. Buffelli, P. Liò, F. Vandin <strong>SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks</strong>. <span style="font-style:italic">NeurIPS</span>.</li>
119-
<li>D. Buffelli, F. Vandin. <strong>Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach</strong>. <span style="font-style:italic">IJCNN</span>.</li>
120-
<li>A. Guiotto, G. Bortolami, A. Ciniglio, F. Spolaor, G. Guarneri, A. Avogaro, F. Cibin, F. Silvestri, Z. Sawacha. <strong>Machine learning approach to diabetic foot risk classification with biomechanics data</strong>. <span style="font-style:italic">Gait & Posture</span>.</li>
121-
</ul>
122-
<h3 class="mb-0">2021</h3>
123-
<ul>
124-
<li>D. Santoro, L. Pellegrina, F. Vandin <strong>SPRISS: Approximating Frequent k-mers by Sampling Reads, and Applications</strong>. <span style="font-style:italic">RECOMB</span>.</li>
125-
<li>A. Tonon, F. Vandin <strong>CASPITA: Mining Statistically Significant Paths in Time Series Data from an Unknown Network</strong>. <span style="font-style:italic">ICDM</span>.</li>
126-
<li>R. Chowdhury, F. Silvestri, F. Vella <strong>Algorithm Design for Tensor Units</strong>. <span style="font-style:italic">Euro-Par</span>.</li>
127-
<li>I. Sarpe, F. Vandin <strong>odeN: Simultaneous Approximation of Multiple Motif Counts in Large Temporal Networks</strong>. <span style="font-style:italic">CIKM</span>.</li>
128-
<li>D. Buffelli, F. Vandin <strong>Attention-based deep learning framework for human activity recognition with user adaptation</strong>. <span style="font-style:italic">IEEE Sensors Journal</span>.</li>
129-
<li>M. Aumuller, S. Har-Peled, S. Mahabadi, R. Pagh, F.Silvestri <strong>Fair near neighbor search via sampling</strong>. <span style="font-style:italic">ACM SIGMOD Record</span>.</li>
130-
<li>M. Comin, B. Di Camillo, C. Pizzi, F. Vandin <strong>Comparison of microbiome samples: methods and computational challenges</strong>. <span style="font-style:italic">Briefings in Bioinformatics</span>.</li>
131-
<li>E. Costa, F. Silvestri <strong>On the Bike Spreading Problem</strong>. <span style="font-style:italic">ATMOS</span>.</li>
132-
<li>I. Sarpe, F. Vandin <strong>Presto: Simple and scalable sampling techniques for the rigorous approximation of temporal motif counts</strong>. <span style="font-style:italic">SIAM SDM</span>.</li>
133-
<li>F. Altieri, A. Pietracaprina, G. Pucci, F. Vandin <strong>Scalable distributed approximation of internal measures for clustering evaluation</strong>. <span style="font-style:italic">SIAM SDM</span>.</li>
103+
<!-- PUBS -->
104+
<h3 class="mb-0">2023</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><a href="https://doi.org/10.1007/s10115-022-01800-7">caSPiTa: mining statistically significant paths in time series data from an unknown network.</a></emph> Knowl. Inf. Syst.</li>
105+
<li>Shiyuan Deng, Francesco Silvestri, Yufei Tao <emph><a href="https://doi.org/10.4230/LIPIcs.ICDT.2023.4">Enumerating Subgraphs of Constant Sizes in External Memory.</a></emph> ICDT</li></ul>
106+
<h3 class="mb-0">2022</h3><ul><li>Fabio Vandin <emph><a href="https://doi.org/10.1145/3535334">Technical perspective: Evaluating sampled metrics is challenging.</a></emph> Commun. ACM</li>
107+
<li>A. Guiotto, G. Bortolami, A. Ciniglio, F. Spolaor, G. Guarneri, A. Avogaro, F. Cibin, F. Silvestri, Z. Sawacha. <emph><a href="https://www.sciencedirect.com/science/article/abs/pii/S0966636222005537">Machine learning approach to diabetic foot risk classification with biomechanics data</a></emph> Gait & Posture</li>
108+
<li>Adam Charane, Matteo Ceccarello, Anton Dignös, Johann Gamper <emph><a href="https://doi.org/10.1007/978-3-031-09850-5_17">Efficient Computation of All-Window Length Correlations.</a></emph> DB&amp;IS</li>
109+
<li>Andrea Tonon, Fabio Vandin <emph><a href="https://doi.org/10.1007/s10115-022-01689-2">gRosSo: mining statistically robust patterns from a sequence of datasets.</a></emph> Knowl. Inf. Syst.</li>
110+
<li>Dario Simionato, Fabio Vandin <emph><a href="https://doi.org/10.1007/978-3-031-26419-1_16">Bounding the Family-Wise Error Rate in Local Causal Discovery Using Rademacher Averages.</a></emph> ECML/PKDD</li>
111+
<li>Davide Buffelli, Fabio Vandin <emph><a href="https://doi.org/10.1109/IJCNN55064.2022.9892010">Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach.</a></emph> IJCNN</li>
112+
<li>Davide Buffelli, Fabio Vandin <emph><a href="https://doi.org/10.3390/data7010010">The Impact of Global Structural Information in Graph Neural Networks Applications.</a></emph> Data</li>
113+
<li>Davide Buffelli, Pietro Lió, Fabio Vandin <emph><a href="https://papers.nips.cc/paper_files/paper/2022/hash/ceeb3fa5be458f08fbb12a5bb783aac8-Abstract-Conference.html">SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks</a></emph> NeurIPS</li>
114+
<li>Diego Santoro, Ilie Sarpe <emph><a href="https://doi.org/10.1145/3485447.3512204">ONBRA: Rigorous Estimation of the Temporal Betweenness Centrality in Temporal Networks.</a></emph> WWW</li>
115+
<li>Diego Santoro, Leonardo Pellegrina, Matteo Comin, Fabio Vandin <emph><a href="https://doi.org/10.1093/bioinformatics/btac180">SPRISS: approximating frequent k-mers by sampling reads, and applications.</a></emph> Bioinform.</li>
116+
<li>Johann Gamper, Matteo Ceccarello, Anton Dignös <emph><a href="https://doi.org/10.1007/978-3-031-15740-0_5">What&apos;s New in Temporal Databases?</a></emph> ADBIS</li>
117+
<li>Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato <emph><a href="https://doi.org/10.1145/3532187">MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining.</a></emph> ACM Trans. Knowl. Discov. Data</li>
118+
<li>Leonardo Pellegrina, Fabio Vandin <emph><a href="https://pubmed.ncbi.nlm.nih.gov/36124798/">Discovering significant evolutionary trajectories in cancer phylogenies</a></emph> Bioinformatics</li>
119+
<li>Martin Aumüller, Matteo Ceccarello <emph><a href="https://doi.org/10.5441/002/edbt.2022.07">Implementing Distributed Similarity Joins using Locality Sensitive Hashing.</a></emph> EDBT</li>
120+
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><a href="https://doi.org/10.1145/3502867">Sampling a Near Neighbor in High Dimensions - Who is the Fairest of Them All?</a></emph> ACM Trans. Database Syst.</li>
121+
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><a href="https://doi.org/10.1145/3543667">Sampling near neighbors in search for fairness.</a></emph> Commun. ACM</li>
122+
<li>Matteo Ceccarello, Johann Gamper <emph><a href="https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf">Fast and Scalable Mining of Time Series Motifs with Probabilistic Guarantees.</a></emph> Proc. VLDB Endow.</li>
123+
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><a href="https://doi.org/10.1007/s41060-022-00318-z">Adaptive k-center and diameter estimation in sliding windows.</a></emph> Int. J. Data Sci. Anal.</li>
124+
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><a href="https://doi.org/10.3390/a15020052">k-Center Clustering with Outliers in Sliding Windows.</a></emph> Algorithms</li>
125+
<li>Paolo Sylos Labini, Massimo Bernaschi, Werner Nutt, Francesco Silvestri, Flavio Vella <emph><a href="https://doi.org/10.1109/IA356718.2022.00009">Blocking Sparse Matrices to Leverage Dense-Specific Multiplication.</a></emph> IA3@SC</li></ul>
126+
<h3 class="mb-0">2021</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><a href="https://doi.org/10.1109/ICDM51629.2021.00075">CASPITA: Mining Statistically Significant Paths in Time Series Data from an Unknown Network.</a></emph> ICDM</li>
127+
<li>Davide Buffelli, Fabio Vandin <emph><a href="https://ieeexplore.ieee.org/document/9382331">Attention-Based Deep Learning Framework for Human Activity Recognition With User Adaptation</a></emph> IEEE Sensors</li>
128+
<li>Diego Santoro, Leonardo Pellegrina, Fabio Vandin <emph><a href="https://arxiv.org/abs/2101.07117">SPRISS: Approximating Frequent k-mers by Sampling Reads, and Applications</a></emph> RECOMB</li>
129+
<li>Elia Costa, Francesco Silvestri <emph><a href="https://doi.org/10.4230/OASIcs.ATMOS.2021.5">On the Bike Spreading Problem.</a></emph> ATMOS</li>
130+
<li>Federico Altieri, Andrea Pietracaprina, Geppino Pucci, Fabio Vandin <emph><a href="https://doi.org/10.1137/1.9781611976700.73">Scalable Distributed Approximation of Internal Measures for Clustering Evaluation.</a></emph> SDM</li>
131+
<li>Ilie Sarpe, Fabio Vandin <emph><a href="https://doi.org/10.1137/1.9781611976700.17">PRESTO: Simple and Scalable Sampling Techniques for the Rigorous Approximation of Temporal Motif Counts.</a></emph> SDM</li>
132+
<li>Ilie Sarpe, Fabio Vandin <emph><a href="https://doi.org/10.1145/3459637.3482459">odeN: Simultaneous Approximation of Multiple Motif Counts in Large Temporal Networks.</a></emph> CIKM</li>
133+
<li>Martin Aumüller, Matteo Ceccarello <emph><a href="https://doi.org/10.1016/j.is.2021.101807">The role of local dimensionality measures in benchmarking nearest neighbor search.</a></emph> Inf. Syst.</li>
134+
<li>Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, Francesco Silvestri <emph><a href="https://doi.org/10.1145/3471485.3471496">Fair near neighbor search via sampling.</a></emph> SIGMOD Rec.</li>
135+
<li>Matteo Comin, Barbara Di Camillo, Cinzia Pizzi, Fabio Vandin <emph><a href="https://doi.org/10.1093/bib/bbaa121">Comparison of microbiome samples: methods and computational challenges.</a></emph> Briefings Bioinform.</li>
136+
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><a href="https://doi.org/10.1007/978-3-030-85665-6_22">Algorithm Design for Tensor Units.</a></emph> Euro-Par</li></ul>
137+
<h3 class="mb-0">2020</h3><ul><li>Andrea Tonon, Fabio Vandin <emph><a href="https://doi.org/10.1109/ICDM50108.2020.00064">GRosSo: Mining Statistically Robust Patterns from a Sequence of Datasets.</a></emph> ICDM</li>
138+
<li>Diego Santoro, Andrea Tonon, Fabio Vandin <emph><a href="https://doi.org/10.3390/a13050123">Mining Sequential Patterns with VC-Dimension and Rademacher Complexity.</a></emph> Algorithms</li>
139+
<li>Leonardo Pellegrina, Cinzia Pizzi, Fabio Vandin <emph><a href="https://doi.org/10.1089/cmb.2019.0314">Fast Approximation of Frequent k-Mers and Applications to Metagenomics.</a></emph> J. Comput. Biol.</li>
140+
<li>Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato <emph><a href="https://doi.org/10.1145/3394486.3403267">MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining.</a></emph> KDD</li>
141+
<li>Leonardo Pellegrina, Fabio Vandin <emph><a href="https://doi.org/10.1007/s10618-020-00687-8">Efficient mining of the most significant patterns with permutation testing.</a></emph> Data Min. Knowl. Discov.</li>
142+
<li>Martin Aumüller, Matteo Ceccarello <emph><a href="https://doi.org/10.1007/978-3-030-60936-8_31">Running Experiments with Confidence and Sanity.</a></emph> SISAP</li>
143+
<li>Martin Aumüller, Rasmus Pagh, Francesco Silvestri <emph><a href="https://doi.org/10.1145/3375395.3387648">Fair Near Neighbor Search: Independent Range Sampling in High Dimensions.</a></emph> PODS</li>
144+
<li>Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci <emph><a href="https://doi.org/10.1145/3402448">A General Coreset-Based Approach to Diversity Maximization under Matroid Constraints.</a></emph> ACM Trans. Knowl. Discov. Data</li>
145+
<li>Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, Eli Upfal <emph><a href="https://doi.org/10.3390/a13090216">Distributed Graph Diameter Approximation.</a></emph> Algorithms</li>
146+
<li>Matteo Riondato, Fabio Vandin <emph><a href="https://doi.org/10.1145/3385653">MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension.</a></emph> ACM Trans. Knowl. Discov. Data</li>
147+
<li>Paolo Pellizzoni, Andrea Pietracaprina, Geppino Pucci <emph><a href="https://doi.org/10.1109/DSAA49011.2020.00032">Dimensionality-adaptive k-center in sliding windows.</a></emph> DSAA</li>
148+
<li>Rezaul Chowdhury, Francesco Silvestri, Flavio Vella <emph><a href="https://doi.org/10.1145/3350755.3400252">A Computational Model for Tensor Core Units.</a></emph> SPAA</li>
149+
<li>Thomas D. Ahle, Francesco Silvestri <emph><a href="https://doi.org/10.1007/978-3-030-60936-8_6">Similarity Search with Tensor Core Units.</a></emph> SISAP</li>
150+
<li>Yoo-Ah Kim, D. Wojtowicz, R. Sarto Basso, I. Sason, W. Robinson, D. S. Hochbaum, M. Leiserson, R. Sharan, F. Vandin, T. Przytycka. <emph><a href="https://pubmed.ncbi.nlm.nih.gov/32471470/">Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer</a></emph> Genome Medicine</li></ul>
134151

135-
</ul>
136-
<h3 class="mb-0">2020</h3>
137-
<ul>
138-
<li>L. Pellegrina, C. Cousins, F. Vandin, M. Riondato <strong>MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining</strong>. <span style="font-style:italic">ACM KDD</span>.</li>
139-
<li>Yoo-Ah Kim, D. Wojtowicz, R. Sarto Basso, I. Sason, W. Robinson, D. S. Hochbaum, M. Leiserson, R. Sharan, F. Vandin, T. Przytycka.<strong> Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer</strong>. <span style="font-style:italic">Genome Medicine</span>.</li>
140-
<li>T. D. Ahle, F. Silvestri. <strong>Similarity search with tensor core units</strong>. <span style="font-style:italic">SISAP</span>.</li>
141-
<li>P. Pellizzoni, A. Pietracaprina, G. Pucci.<strong> Dimensionality-adaptive k-center in sliding windows</strong>. <span style="font-style:italic">DSAA</span>.</li>
142-
<li>Yoo-Ah Kim, R. Sarto Basso, D. Wojtowicz, A. S. Liu, D. S. Hochbaum, F. Vandin, T. Przytycka.<strong> Identifying drug sensitivity subnetworks with netphix</strong>. <span style="font-style:italic">iScience</span>.</li>
143-
<li>L. Pellegrina, F. Vandin. <strong>Efficient Mining of the Most Significant Patterns with Permutation Testing</strong>. <span style="font-style:italic">Data Mining & Knowledge Discovery</span>.</li>
144-
<li>M. Aumüller, R. Pagh, F. Silvestri. <strong>Fair near neighbor search: Independent range sampling in high dimensions</strong>. <span style="font-style:italic">PODS</span>.</li>
145-
<li>M. Ceccarello, A. Pietracaprina, G. Pucci, E. Upfal. <strong>Distributed graph diameter approximation</strong>. <span style="font-style:italic">Algorithms</span>.</li>
146-
<li>L. Pellegrina, C. Pizzi, F. Vandin. <strong>Fast Approximation of Frequent k-mers and Applications to Metagenomics", </strong>. <span style="font-style:italic">Journal of Computational Biology</span>.</li>
147-
<li>R. Chowdhury, F. Silvestri, F. Vella. <strong>Brief announcement: a computational model for tensor core units</strong>. <span style="font-style:italic">SPAA</span>.</li>
148-
<li>M. Ceccarello, A. Pietracaprina, G. Pucci <strong>A general coreset-based approach to diversity maximization under matroid constraints</strong>. <span style="font-style:italic">ACM Transactions on Knowledge Discovery from Data (TKDD)</span>.</li>
149-
<li>D. Santoro, A. Tonon, F. Vandin.<strong> Mining sequential patterns with VC-dimension and Rademacher complexity</strong>. <span style="font-style:italic">Algorithms</span>.</li>
150-
</ul>
152+
<!-- PUBS -->
151153
</section>
152154
<hr class="m-0" />
153155
<!-- Projects-->
@@ -224,4 +226,4 @@ <h2 class="mb-5">Master Theses</h2>
224226
<!-- Core theme JS-->
225227
<script src="js/scripts.js"></script>
226228
</body>
227-
</html>
229+
</html>

0 commit comments

Comments
 (0)