|
| 1 | +# This is an example of using nonlinear encoding on the MNIST dataset |
| 2 | +import torch |
| 3 | +import torch.nn as nn |
| 4 | +import torch.nn.functional as F |
| 5 | +import torchvision |
| 6 | +from torchvision.datasets import MNIST |
| 7 | + |
| 8 | +# Note: this example requires the torchmetrics library: https://torchmetrics.readthedocs.io |
| 9 | +import torchmetrics |
| 10 | +from tqdm import tqdm |
| 11 | + |
| 12 | +import torchhd |
| 13 | +from torchhd import embeddings |
| 14 | + |
| 15 | + |
| 16 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 17 | +print("Using {} device".format(device)) |
| 18 | + |
| 19 | +DIMENSIONS = 10000 |
| 20 | +IMG_SIZE = 28 |
| 21 | +BATCH_SIZE = 1 # for GPUs with enough memory we can process multiple images at ones |
| 22 | + |
| 23 | +transform = torchvision.transforms.ToTensor() |
| 24 | + |
| 25 | +train_ds = MNIST("../data", train=True, transform=transform, download=True) |
| 26 | +train_ld = torch.utils.data.DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True) |
| 27 | + |
| 28 | +test_ds = MNIST("../data", train=False, transform=transform, download=True) |
| 29 | +test_ld = torch.utils.data.DataLoader(test_ds, batch_size=BATCH_SIZE, shuffle=False) |
| 30 | + |
| 31 | +class Model(nn.Module): |
| 32 | + def __init__(self, num_classes, size): |
| 33 | + super(Model, self).__init__() |
| 34 | + |
| 35 | + self.flatten = torch.nn.Flatten() |
| 36 | + |
| 37 | + self.nonlinear_projection = embeddings.Sinusoid(size * size, DIMENSIONS) |
| 38 | + |
| 39 | + self.classify = nn.Linear(DIMENSIONS, num_classes, bias=False) |
| 40 | + self.classify.weight.data.fill_(0.0) |
| 41 | + |
| 42 | + def encode(self, x): |
| 43 | + x = self.flatten(x) |
| 44 | + sample_hv = self.nonlinear_projection(x) |
| 45 | + return torchhd.hard_quantize(sample_hv) |
| 46 | + |
| 47 | + def forward(self, x): |
| 48 | + enc = self.encode(x) |
| 49 | + logit = self.classify(enc) |
| 50 | + return logit |
| 51 | + |
| 52 | + |
| 53 | +model = Model(len(train_ds.classes), IMG_SIZE) |
| 54 | +model = model.to(device) |
| 55 | + |
| 56 | +with torch.no_grad(): |
| 57 | + for samples, labels in tqdm(train_ld, desc="Training"): |
| 58 | + samples = samples.to(device) |
| 59 | + labels = labels.to(device) |
| 60 | + |
| 61 | + samples_hv = model.encode(samples) |
| 62 | + model.classify.weight[labels] += samples_hv |
| 63 | + |
| 64 | + model.classify.weight[:] = F.normalize(model.classify.weight) |
| 65 | + |
| 66 | +accuracy = torchmetrics.Accuracy() |
| 67 | + |
| 68 | + |
| 69 | +with torch.no_grad(): |
| 70 | + for samples, labels in tqdm(test_ld, desc="Testing"): |
| 71 | + samples = samples.to(device) |
| 72 | + |
| 73 | + outputs = model(samples) |
| 74 | + predictions = torch.argmax(outputs, dim=-1) |
| 75 | + accuracy.update(predictions.cpu(), labels) |
| 76 | + |
| 77 | +print(f"Testing accuracy of {(accuracy.compute().item() * 100):.3f}%") |
0 commit comments