|
| 1 | +/* |
| 2 | + * Copyright (c) "Neo4j" |
| 3 | + * Neo4j Sweden AB [http://neo4j.com] |
| 4 | + * |
| 5 | + * This file is part of Neo4j. |
| 6 | + * |
| 7 | + * Neo4j is free software: you can redistribute it and/or modify |
| 8 | + * it under the terms of the GNU General Public License as published by |
| 9 | + * the Free Software Foundation, either version 3 of the License, or |
| 10 | + * (at your option) any later version. |
| 11 | + * |
| 12 | + * This program is distributed in the hope that it will be useful, |
| 13 | + * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | + * GNU General Public License for more details. |
| 16 | + * |
| 17 | + * You should have received a copy of the GNU General Public License |
| 18 | + * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 | + */ |
| 20 | +package org.neo4j.gds.ml.pipeline.nodePipeline.classification.train; |
| 21 | + |
| 22 | +import org.junit.jupiter.api.Test; |
| 23 | +import org.neo4j.gds.api.GraphStore; |
| 24 | +import org.neo4j.gds.core.utils.progress.tasks.ProgressTracker; |
| 25 | +import org.neo4j.gds.executor.ExecutionContext; |
| 26 | +import org.neo4j.gds.extension.GdlExtension; |
| 27 | +import org.neo4j.gds.extension.GdlGraph; |
| 28 | +import org.neo4j.gds.extension.Inject; |
| 29 | +import org.neo4j.gds.ml.metrics.classification.Accuracy; |
| 30 | +import org.neo4j.gds.ml.metrics.classification.ClassificationMetricSpecification; |
| 31 | +import org.neo4j.gds.ml.metrics.classification.GlobalAccuracy; |
| 32 | +import org.neo4j.gds.ml.models.logisticregression.LogisticRegressionTrainConfigImpl; |
| 33 | +import org.neo4j.gds.ml.pipeline.nodePipeline.NodeFeatureProducer; |
| 34 | +import org.neo4j.gds.ml.pipeline.nodePipeline.NodeFeatureStep; |
| 35 | +import org.neo4j.gds.ml.pipeline.nodePipeline.classification.NodeClassificationTrainingPipeline; |
| 36 | + |
| 37 | +import java.util.List; |
| 38 | + |
| 39 | +import static org.assertj.core.api.Assertions.assertThat; |
| 40 | + |
| 41 | +@GdlExtension |
| 42 | +public class NodeClassificationTrainClassValueInvarianceTest { |
| 43 | + |
| 44 | + private static final String GRAPH_NAME_1 = "G11"; |
| 45 | + |
| 46 | + @GdlGraph(graphNamePrefix = "nodes1") |
| 47 | + private static final String DB_QUERY1 = |
| 48 | + "CREATE " + |
| 49 | + " (a1:N {bananas: 100.0, arrayProperty: [1.2, 1.2], a: 1.2, b: 1.2, t: 0})" + |
| 50 | + ", (a2:N {bananas: 100.0, arrayProperty: [2.8, 2.5], a: 2.8, b: 2.5, t: 0})" + |
| 51 | + ", (a3:N {bananas: 100.0, arrayProperty: [3.3, 0.5], a: 3.3, b: 0.5, t: 0})" + |
| 52 | + ", (a4:N {bananas: 100.0, arrayProperty: [1.0, 0.5], a: 1.0, b: 0.5, t: 0})" + |
| 53 | + ", (a5:N {bananas: 100.0, arrayProperty: [1.32, 0.5], a: 1.32, b: 0.5, t: 0})" + |
| 54 | + ", (a6:N {bananas: 100.0, arrayProperty: [1.3, 1.5], a: 1.3, b: 1.5, t: 1})" + |
| 55 | + ", (a7:N {bananas: 100.0, arrayProperty: [5.3, 10.5], a: 5.3, b: 10.5, t: 1})" + |
| 56 | + ", (a8:N {bananas: 100.0, arrayProperty: [1.3, 2.5], a: 1.3, b: 2.5, t: 1})" + |
| 57 | + ", (a9:N {bananas: 100.0, arrayProperty: [0.0, 66.8], a: 0.0, b: 66.8, t: 1})" + |
| 58 | + ", (a10:N {bananas: 100.0, arrayProperty: [0.1, 2.8], a: 0.1, b: 2.8, t: 1})" + |
| 59 | + ", (a11:N {bananas: 100.0, arrayProperty: [0.66, 2.8], a: 0.66, b: 2.8, t: 1})" + |
| 60 | + ", (a12:N {bananas: 100.0, arrayProperty: [2.0, 10.8], a: 2.0, b: 10.8, t: 1})" + |
| 61 | + ", (a13:N {bananas: 100.0, arrayProperty: [5.0, 7.8], a: 5.0, b: 7.8, t: 2})" + |
| 62 | + ", (a14:N {bananas: 100.0, arrayProperty: [4.0, 5.8], a: 4.0, b: 5.8, t: 2})" + |
| 63 | + ", (a15:N {bananas: 100.0, arrayProperty: [1.0, 0.9], a: 1.0, b: 0.9, t: 2})"; |
| 64 | + |
| 65 | + @Inject |
| 66 | + private GraphStore nodes1GraphStore; |
| 67 | + |
| 68 | + private static final String GRAPH_NAME_2 = "G2"; |
| 69 | + |
| 70 | + @GdlGraph(graphNamePrefix = "nodes2") |
| 71 | + private static final String DB_QUERY2 = |
| 72 | + "CREATE " + |
| 73 | + " (a1:N {bananas: 100.0, arrayProperty: [1.2, 1.2], a: 1.2, b: 1.2, t: 0})" + |
| 74 | + ", (a2:N {bananas: 100.0, arrayProperty: [2.8, 2.5], a: 2.8, b: 2.5, t: 0})" + |
| 75 | + ", (a3:N {bananas: 100.0, arrayProperty: [3.3, 0.5], a: 3.3, b: 0.5, t: 0})" + |
| 76 | + ", (a4:N {bananas: 100.0, arrayProperty: [1.0, 0.5], a: 1.0, b: 0.5, t: 0})" + |
| 77 | + ", (a5:N {bananas: 100.0, arrayProperty: [1.32, 0.5], a: 1.32, b: 0.5, t: 0})" + |
| 78 | + ", (a6:N {bananas: 100.0, arrayProperty: [1.3, 1.5], a: 1.3, b: 1.5, t: 222})" + |
| 79 | + ", (a7:N {bananas: 100.0, arrayProperty: [5.3, 10.5], a: 5.3, b: 10.5, t: 222})" + |
| 80 | + ", (a8:N {bananas: 100.0, arrayProperty: [1.3, 2.5], a: 1.3, b: 2.5, t: 222})" + |
| 81 | + ", (a9:N {bananas: 100.0, arrayProperty: [0.0, 66.8], a: 0.0, b: 66.8, t: 222})" + |
| 82 | + ", (a10:N {bananas: 100.0, arrayProperty: [0.1, 2.8], a: 0.1, b: 2.8, t: 222})" + |
| 83 | + ", (a11:N {bananas: 100.0, arrayProperty: [0.66, 2.8], a: 0.66, b: 2.8, t: 222})" + |
| 84 | + ", (a12:N {bananas: 100.0, arrayProperty: [2.0, 10.8], a: 2.0, b: 10.8, t: 222})" + |
| 85 | + ", (a13:N {bananas: 100.0, arrayProperty: [5.0, 7.8], a: 5.0, b: 7.8, t: 333})" + |
| 86 | + ", (a14:N {bananas: 100.0, arrayProperty: [4.0, 5.8], a: 4.0, b: 5.8, t: 333})" + |
| 87 | + ", (a15:N {bananas: 100.0, arrayProperty: [1.0, 0.9], a: 1.0, b: 0.9, t: 333})"; |
| 88 | + |
| 89 | + @Inject |
| 90 | + private GraphStore nodes2GraphStore; |
| 91 | + |
| 92 | + /** |
| 93 | + * This tests that the specific class values do not matter, as long as the ordering is the same. |
| 94 | + * However, if the *ordering* of the class values differ, the splits in cross-validation could differ, resulting in different accuracies. |
| 95 | + */ |
| 96 | + @Test |
| 97 | + void trainWithDifferentClassValues() { |
| 98 | + var pipeline = new NodeClassificationTrainingPipeline(); |
| 99 | + pipeline.addFeatureStep(NodeFeatureStep.of("a")); |
| 100 | + pipeline.addFeatureStep(NodeFeatureStep.of("b")); |
| 101 | + |
| 102 | + var lrTrainerConfig = LogisticRegressionTrainConfigImpl.builder().build(); |
| 103 | + pipeline.addTrainerConfig(lrTrainerConfig); |
| 104 | + |
| 105 | + var accuracyMetricSpec = ClassificationMetricSpecification.Parser.parse("accuracy"); |
| 106 | + var accuracyPerClassMetricSpec = ClassificationMetricSpecification.Parser.parse("accuracy(class=*)"); |
| 107 | + |
| 108 | + var config01 = createConfig("model1", GRAPH_NAME_1, List.of(accuracyMetricSpec, accuracyPerClassMetricSpec), 1L); |
| 109 | + var ncTrain01 = createWithExecutionContext( |
| 110 | + nodes1GraphStore, |
| 111 | + pipeline, |
| 112 | + config01, |
| 113 | + ProgressTracker.NULL_TRACKER |
| 114 | + ); |
| 115 | + var result01 = ncTrain01.run(); |
| 116 | + assertThat(result01.classifier().data().featureDimension()).isEqualTo(2); |
| 117 | + |
| 118 | + //Run with graph that have class values 0 and 2 |
| 119 | + var config02 = createConfig("model2", GRAPH_NAME_2, List.of(accuracyMetricSpec, accuracyPerClassMetricSpec), 1L); |
| 120 | + var ncTrain02 = createWithExecutionContext( |
| 121 | + nodes2GraphStore, |
| 122 | + pipeline, |
| 123 | + config02, |
| 124 | + ProgressTracker.NULL_TRACKER |
| 125 | + ); |
| 126 | + var result02 = ncTrain02.run(); |
| 127 | + assertThat(result01.classifier().data().featureDimension()).isEqualTo(2); |
| 128 | + |
| 129 | + var globalAccuracy = new GlobalAccuracy(); |
| 130 | + var accuracyForClass1 = new Accuracy(0, 0); |
| 131 | + var accuracyForClass2 = new Accuracy(1, 1); |
| 132 | + var accuracyForClass3 = new Accuracy(2, 2); |
| 133 | + |
| 134 | + var accuracyForClass0 = new Accuracy(0, 0); |
| 135 | + var accuracyForClass222 = new Accuracy(222, 1); |
| 136 | + var accuracyForClass333 = new Accuracy(333, 2); |
| 137 | + |
| 138 | + assertThat(result01.trainingStatistics().getTrainStats(globalAccuracy)).isEqualTo(result02.trainingStatistics().getTrainStats(globalAccuracy)); |
| 139 | + assertThat(result01.trainingStatistics().getTrainStats(accuracyForClass1)).isEqualTo(result02.trainingStatistics().getTrainStats(accuracyForClass0)); |
| 140 | + assertThat(result01.trainingStatistics().getTrainStats(accuracyForClass2)).isEqualTo(result02.trainingStatistics().getTrainStats(accuracyForClass222)); |
| 141 | + assertThat(result01.trainingStatistics().getTrainStats(accuracyForClass3)).isEqualTo(result02.trainingStatistics().getTrainStats(accuracyForClass333)); |
| 142 | + |
| 143 | + assertThat(result01.trainingStatistics().getValidationStats(globalAccuracy)).isEqualTo(result02.trainingStatistics().getValidationStats(globalAccuracy)); |
| 144 | + assertThat(result01.trainingStatistics().getValidationStats(accuracyForClass1)).isEqualTo(result02.trainingStatistics().getValidationStats(accuracyForClass0)); |
| 145 | + assertThat(result01.trainingStatistics().getValidationStats(accuracyForClass2)).isEqualTo(result02.trainingStatistics().getValidationStats(accuracyForClass222)); |
| 146 | + assertThat(result01.trainingStatistics().getValidationStats(accuracyForClass3)).isEqualTo(result02.trainingStatistics().getValidationStats(accuracyForClass333)); |
| 147 | + |
| 148 | + assertThat(result01.trainingStatistics().getTestScore(globalAccuracy)).isEqualTo(result02.trainingStatistics().getTestScore(globalAccuracy)); |
| 149 | + assertThat(result01.trainingStatistics().getTestScore(accuracyForClass1)).isEqualTo(result02.trainingStatistics().getTestScore(accuracyForClass0)); |
| 150 | + assertThat(result01.trainingStatistics().getTestScore(accuracyForClass2)).isEqualTo(result02.trainingStatistics().getTestScore(accuracyForClass222)); |
| 151 | + assertThat(result01.trainingStatistics().getTestScore(accuracyForClass3)).isEqualTo(result02.trainingStatistics().getTestScore(accuracyForClass333)); |
| 152 | + |
| 153 | + } |
| 154 | + |
| 155 | + private NodeClassificationPipelineTrainConfig createConfig( |
| 156 | + String modelName, |
| 157 | + String graphName, |
| 158 | + List<ClassificationMetricSpecification> metricSpecification, |
| 159 | + long randomSeed |
| 160 | + ) { |
| 161 | + return NodeClassificationPipelineTrainConfigImpl.builder() |
| 162 | + .pipeline("") |
| 163 | + .graphName(graphName) |
| 164 | + .modelUser("DUMMY") |
| 165 | + .modelName(modelName) |
| 166 | + .concurrency(1) |
| 167 | + .randomSeed(randomSeed) |
| 168 | + .targetProperty("t") |
| 169 | + .metrics(metricSpecification) |
| 170 | + .build(); |
| 171 | + } |
| 172 | + |
| 173 | + static NodeClassificationTrain createWithExecutionContext( |
| 174 | + GraphStore graphStore, |
| 175 | + NodeClassificationTrainingPipeline pipeline, |
| 176 | + NodeClassificationPipelineTrainConfig config, |
| 177 | + ProgressTracker progressTracker |
| 178 | + ) { |
| 179 | + var nodeFeatureProducer = NodeFeatureProducer.create(graphStore, config, ExecutionContext.EMPTY, progressTracker); |
| 180 | + return NodeClassificationTrain.create( |
| 181 | + graphStore, |
| 182 | + pipeline, |
| 183 | + config, |
| 184 | + nodeFeatureProducer, |
| 185 | + progressTracker |
| 186 | + ); |
| 187 | + } |
| 188 | + |
| 189 | +} |
0 commit comments