@@ -279,6 +279,13 @@ def is_datetime64_dtype(arr_or_dtype) -> bool:
279279 boolean
280280 Whether or not the array-like or dtype is of the datetime64 dtype.
281281
282+ See Also
283+ --------
284+ api.types.is_datetime64_ns_dtype: Check whether the provided array or
285+ dtype is of the datetime64[ns] dtype.
286+ api.types.is_datetime64_any_dtype: Check whether the provided array or
287+ dtype is of the datetime64 dtype.
288+
282289 Examples
283290 --------
284291 >>> from pandas.api.types import is_datetime64_dtype
@@ -316,6 +323,13 @@ def is_datetime64tz_dtype(arr_or_dtype) -> bool:
316323 boolean
317324 Whether or not the array-like or dtype is of a DatetimeTZDtype dtype.
318325
326+ See Also
327+ --------
328+ api.types.is_datetime64_dtype: Check whether an array-like or
329+ dtype is of the datetime64 dtype.
330+ api.types.is_datetime64_any_dtype: Check whether the provided array or
331+ dtype is of the datetime64 dtype.
332+
319333 Examples
320334 --------
321335 >>> from pandas.api.types import is_datetime64tz_dtype
@@ -514,6 +528,12 @@ def is_categorical_dtype(arr_or_dtype) -> bool:
514528 boolean
515529 Whether or not the array-like or dtype is of the Categorical dtype.
516530
531+ See Also
532+ --------
533+ api.types.is_list_like: Check if the object is list-like.
534+ api.types.is_complex_dtype: Check whether the provided array or
535+ dtype is of a complex dtype.
536+
517537 Examples
518538 --------
519539 >>> from pandas.api.types import is_categorical_dtype
@@ -977,6 +997,13 @@ def is_datetime64_ns_dtype(arr_or_dtype) -> bool:
977997 bool
978998 Whether or not the array or dtype is of the datetime64[ns] dtype.
979999
1000+ See Also
1001+ --------
1002+ api.types.is_datetime64_dtype: Check whether an array-like or
1003+ dtype is of the datetime64 dtype.
1004+ api.types.is_datetime64_any_dtype: Check whether the provided array or
1005+ dtype is of the datetime64 dtype.
1006+
9801007 Examples
9811008 --------
9821009 >>> from pandas.api.types import is_datetime64_ns_dtype
@@ -1436,6 +1463,14 @@ def is_complex_dtype(arr_or_dtype) -> bool:
14361463 boolean
14371464 Whether or not the array or dtype is of a complex dtype.
14381465
1466+ See Also
1467+ --------
1468+ api.types.is_complex: Return True if given object is complex.
1469+ api.types.is_numeric_dtype: Check whether the provided array or
1470+ dtype is of a numeric dtype.
1471+ api.types.is_integer_dtype: Check whether the provided array or
1472+ dtype is of an integer dtype.
1473+
14391474 Examples
14401475 --------
14411476 >>> from pandas.api.types import is_complex_dtype
0 commit comments