|
1 | | -from pandas_vb_common import * |
2 | | -from itertools import product |
| 1 | +from .pandas_vb_common import * |
3 | 2 | from string import ascii_letters, digits |
| 3 | +from itertools import product |
4 | 4 |
|
5 | 5 |
|
6 | 6 | class groupby_agg_builtins1(object): |
@@ -1535,12 +1535,12 @@ def setup(self): |
1535 | 1535 | self.secid_max = int('F0000000', 16) |
1536 | 1536 | self.step = ((self.secid_max - self.secid_min) // (self.n_securities - 1)) |
1537 | 1537 | self.security_ids = map((lambda x: hex(x)[2:10].upper()), range(self.secid_min, (self.secid_max + 1), self.step)) |
1538 | | - self.data_index = MultiIndex(levels=[self.dates.values, self.security_ids], labels=[[i for i in xrange(self.n_dates) for _ in xrange(self.n_securities)], (range(self.n_securities) * self.n_dates)], names=['date', 'security_id']) |
| 1538 | + self.data_index = MultiIndex(levels=[self.dates.values, self.security_ids], labels=[[i for i in range(self.n_dates) for _ in xrange(self.n_securities)], (range(self.n_securities) * self.n_dates)], names=['date', 'security_id']) |
1539 | 1539 | self.n_data = len(self.data_index) |
1540 | | - self.columns = Index(['factor{}'.format(i) for i in xrange(1, (self.n_columns + 1))]) |
| 1540 | + self.columns = Index(['factor{}'.format(i) for i in range(1, (self.n_columns + 1))]) |
1541 | 1541 | self.data = DataFrame(np.random.randn(self.n_data, self.n_columns), index=self.data_index, columns=self.columns) |
1542 | 1542 | self.step = int((self.n_data * self.share_na)) |
1543 | | - for column_index in xrange(self.n_columns): |
| 1543 | + for column_index in range(self.n_columns): |
1544 | 1544 | self.index = column_index |
1545 | 1545 | while (self.index < self.n_data): |
1546 | 1546 | self.data.set_value(self.data_index[self.index], self.columns[column_index], np.nan) |
@@ -1644,12 +1644,12 @@ def setup(self): |
1644 | 1644 | self.secid_max = int('F0000000', 16) |
1645 | 1645 | self.step = ((self.secid_max - self.secid_min) // (self.n_securities - 1)) |
1646 | 1646 | self.security_ids = map((lambda x: hex(x)[2:10].upper()), range(self.secid_min, (self.secid_max + 1), self.step)) |
1647 | | - self.data_index = MultiIndex(levels=[self.dates.values, self.security_ids], labels=[[i for i in xrange(self.n_dates) for _ in xrange(self.n_securities)], (range(self.n_securities) * self.n_dates)], names=['date', 'security_id']) |
| 1647 | + self.data_index = MultiIndex(levels=[self.dates.values, self.security_ids], labels=[[i for i in range(self.n_dates) for _ in xrange(self.n_securities)], (range(self.n_securities) * self.n_dates)], names=['date', 'security_id']) |
1648 | 1648 | self.n_data = len(self.data_index) |
1649 | | - self.columns = Index(['factor{}'.format(i) for i in xrange(1, (self.n_columns + 1))]) |
| 1649 | + self.columns = Index(['factor{}'.format(i) for i in range(1, (self.n_columns + 1))]) |
1650 | 1650 | self.data = DataFrame(np.random.randn(self.n_data, self.n_columns), index=self.data_index, columns=self.columns) |
1651 | 1651 | self.step = int((self.n_data * self.share_na)) |
1652 | | - for column_index in xrange(self.n_columns): |
| 1652 | + for column_index in range(self.n_columns): |
1653 | 1653 | self.index = column_index |
1654 | 1654 | while (self.index < self.n_data): |
1655 | 1655 | self.data.set_value(self.data_index[self.index], self.columns[column_index], np.nan) |
|
0 commit comments