@@ -11730,7 +11730,6 @@ def sum(
1173011730 return result
1173111731
1173211732 @deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "prod" )
11733- @doc (make_doc ("prod" , ndim = 2 ))
1173411733 def prod (
1173511734 self ,
1173611735 axis : Axis | None = 0 ,
@@ -11739,6 +11738,73 @@ def prod(
1173911738 min_count : int = 0 ,
1174011739 ** kwargs ,
1174111740 ) -> Series :
11741+ """
11742+ Return the product of the values over the requested axis.
11743+
11744+ Parameters
11745+ ----------
11746+ axis : {index (0), columns (1)}
11747+ Axis for the function to be applied on.
11748+ For `Series` this parameter is unused and defaults to 0.
11749+
11750+ .. warning::
11751+
11752+ The behavior of DataFrame.prod with ``axis=None`` is deprecated,
11753+ in a future version this will reduce over both axes and return a scalar
11754+ To retain the old behavior, pass axis=0 (or do not pass axis).
11755+
11756+ .. versionadded:: 2.0.0
11757+
11758+ skipna : bool, default True
11759+ Exclude NA/null values when computing the result.
11760+ numeric_only : bool, default False
11761+ Include only float, int, boolean columns. Not implemented for Series.
11762+
11763+ min_count : int, default 0
11764+ The required number of valid values to perform the operation. If fewer than
11765+ ``min_count`` non-NA values are present the result will be NA.
11766+ **kwargs
11767+ Additional keyword arguments to be passed to the function.
11768+
11769+ Returns
11770+ -------
11771+ Series or scalar
11772+ The product of the values over the requested axis.
11773+
11774+ See Also
11775+ --------
11776+ Series.sum : Return the sum.
11777+ Series.min : Return the minimum.
11778+ Series.max : Return the maximum.
11779+ Series.idxmin : Return the index of the minimum.
11780+ Series.idxmax : Return the index of the maximum.
11781+ DataFrame.sum : Return the sum over the requested axis.
11782+ DataFrame.min : Return the minimum over the requested axis.
11783+ DataFrame.max : Return the maximum over the requested axis.
11784+ DataFrame.idxmin : Return the index of the minimum over the requested axis.
11785+ DataFrame.idxmax : Return the index of the maximum over the requested axis.
11786+
11787+ Examples
11788+ --------
11789+ By default, the product of an empty or all-NA Series is ``1``
11790+
11791+ >>> pd.Series([], dtype="float64").prod()
11792+ 1.0
11793+
11794+ This can be controlled with the ``min_count`` parameter
11795+
11796+ >>> pd.Series([], dtype="float64").prod(min_count=1)
11797+ nan
11798+
11799+ Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
11800+ empty series identically.
11801+
11802+ >>> pd.Series([np.nan]).prod()
11803+ 1.0
11804+
11805+ >>> pd.Series([np.nan]).prod(min_count=1)
11806+ nan
11807+ """
1174211808 result = super ().prod (
1174311809 axis = axis ,
1174411810 skipna = skipna ,
0 commit comments