@@ -24,103 +24,101 @@ that entails.
2424Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
2525repository <http://github.com/jvns/pandas-cookbook> `_.
2626
27- * | `A quick tour of the IPython
28- Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb> `_
29- Shows off IPython's awesome tab completion and magic functions.
30- * | `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb >`_
31- Reading your data into pandas is pretty much the easiest thing. Even
32- when the encoding is wrong!
33- * | `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb >`_
34- It's not totally obvious how to select data from a pandas dataframe.
35- Here we explain the basics (how to take slices and get columns)
36- * | `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb >`_
37- Here we get into serious slicing and dicing and learn how to filter
38- dataframes in complicated ways, really fast.
39- * | `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb >`_
40- Groupby/aggregate is seriously my favorite thing about pandas
41- and I use it all the time. You should probably read this.
42- * | `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb >`_
43- Here you get to find out if it's cold in Montreal in the winter
44- (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
45- * | `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb >`_
46- Strings with pandas are great. It has all these vectorized string
47- operations and they're the best. We will turn a bunch of strings
48- containing "Snow" into vectors of numbers in a trice.
49- * | `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb >`_
50- Cleaning up messy data is never a joy, but with pandas it's easier.
51- * | `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb >`_
52- Parsing Unix timestamps is confusing at first but it turns out
53- to be really easy.
54-
27+ - `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb >`_
28+ Shows off IPython's awesome tab completion and magic functions.
29+ - `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb >`_
30+ Reading your data into pandas is pretty much the easiest thing. Even
31+ when the encoding is wrong!
32+ - `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb >`_
33+ It's not totally obvious how to select data from a pandas dataframe.
34+ Here we explain the basics (how to take slices and get columns)
35+ - `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb >`_
36+ Here we get into serious slicing and dicing and learn how to filter
37+ dataframes in complicated ways, really fast.
38+ - `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb >`_
39+ Groupby/aggregate is seriously my favorite thing about pandas
40+ and I use it all the time. You should probably read this.
41+ - `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb >`_
42+ Here you get to find out if it's cold in Montreal in the winter
43+ (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
44+ - `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb >`_
45+ Strings with pandas are great. It has all these vectorized string
46+ operations and they're the best. We will turn a bunch of strings
47+ containing "Snow" into vectors of numbers in a trice.
48+ - `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb >`_
49+ Cleaning up messy data is never a joy, but with pandas it's easier.
50+ - `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb >`_
51+ Parsing Unix timestamps is confusing at first but it turns out
52+ to be really easy.
5553
5654
5755Lessons for New Pandas Users
5856----------------------------
5957
6058For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas >`_.
6159
62- * | `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb >`_
63- * Importing libraries
64- * Creating data sets
65- * Creating data frames
66- * Reading from CSV
67- * Exporting to CSV
68- * Finding maximums
69- * Plotting data
60+ - `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb >`_
61+ - Importing libraries
62+ - Creating data sets
63+ - Creating data frames
64+ - Reading from CSV
65+ - Exporting to CSV
66+ - Finding maximums
67+ - Plotting data
7068
71- * | `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb >`_
72- * Reading from TXT
73- * Exporting to TXT
74- * Selecting top/bottom records
75- * Descriptive statistics
76- * Grouping/sorting data
69+ - `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb >`_
70+ - Reading from TXT
71+ - Exporting to TXT
72+ - Selecting top/bottom records
73+ - Descriptive statistics
74+ - Grouping/sorting data
7775
78- * | `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb >`_
79- * Creating functions
80- * Reading from EXCEL
81- * Exporting to EXCEL
82- * Outliers
83- * Lambda functions
84- * Slice and dice data
76+ - `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb >`_
77+ - Creating functions
78+ - Reading from EXCEL
79+ - Exporting to EXCEL
80+ - Outliers
81+ - Lambda functions
82+ - Slice and dice data
8583
86- * | `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb >`_
87- * Adding/deleting columns
88- * Index operations
84+ - `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb >`_
85+ - Adding/deleting columns
86+ - Index operations
8987
90- * | `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb >`_
91- * Stack/Unstack/Transpose functions
88+ - `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb >`_
89+ - Stack/Unstack/Transpose functions
9290
93- * | `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb >`_
94- * GroupBy function
91+ - `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb >`_
92+ - GroupBy function
9593
96- * | `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb >`_
97- * Ways to calculate outliers
94+ - `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb >`_
95+ - Ways to calculate outliers
9896
99- * | `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb >`_
100- * Read from Microsoft SQL databases
97+ - `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb >`_
98+ - Read from Microsoft SQL databases
10199
102- * | `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb >`_
103- * Export to CSV/EXCEL/TXT
100+ - `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb >`_
101+ - Export to CSV/EXCEL/TXT
104102
105- * | `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb >`_
106- * Converting between different kinds of formats
103+ - `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb >`_
104+ - Converting between different kinds of formats
107105
108- * | `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb >`_
109- * Combining data from various sources
106+ - `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb >`_
107+ - Combining data from various sources
110108
111109
112110Excel charts with pandas, vincent and xlsxwriter
113111------------------------------------------------
114112
115- * `Using Pandas and XlsxWriter to create Excel charts <http://pandas-xlsxwriter-charts.readthedocs.org/ >`_
113+ - `Using Pandas and XlsxWriter to create Excel charts <http://pandas-xlsxwriter-charts.readthedocs.org/ >`_
116114
117115Various Tutorials
118116-----------------
119117
120- * `Wes McKinney's (Pandas BDFL) blog <http://blog.wesmckinney.com/ >`_
121- * `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/ >`_
122- * `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109 >`_
123- * `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb >`_
124- * `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ >`_
125- * `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/ >`_
126- * `Pandas Tutorial, by Mikhail Semeniuk <www.bearrelroll.com/2013/05/python-pandas-tutorial >`_
118+ - `Wes McKinney's (Pandas BDFL) blog <http://blog.wesmckinney.com/ >`_
119+ - `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/ >`_
120+ - `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109 >`_
121+ - `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb >`_
122+ - `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ >`_
123+ - `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/ >`_
124+ - `Pandas Tutorial, by Mikhail Semeniuk <www.bearrelroll.com/2013/05/python-pandas-tutorial >`_
0 commit comments