@@ -2064,13 +2064,84 @@ def apply(self, func, convert_dtype=True, args=(), **kwds):
20642064 Positional arguments to pass to function in addition to the value
20652065 Additional keyword arguments will be passed as keywords to the function
20662066
2067+ Returns
2068+ -------
2069+ y : Series or DataFrame if func returns a Series
2070+
20672071 See also
20682072 --------
20692073 Series.map: For element-wise operations
20702074
2071- Returns
2072- -------
2073- y : Series or DataFrame if func returns a Series
2075+ Examples
2076+ --------
2077+
2078+ Create a series with typical summer temperatures for each city.
2079+
2080+ >>> import pandas as pd
2081+ >>> import numpy as np
2082+ >>> series = pd.Series([20, 21, 12], index=['London',
2083+ ... 'New York','Helsinki'])
2084+ London 20
2085+ New York 21
2086+ Helsinki 12
2087+ dtype: int64
2088+
2089+ Square the values by defining a function and passing it as an
2090+ argument to ``apply()``.
2091+
2092+ >>> def square(x):
2093+ ... return x**2
2094+ >>> series.apply(square)
2095+ London 400
2096+ New York 441
2097+ Helsinki 144
2098+ dtype: int64
2099+
2100+ Square the values by passing an anonymous function as an
2101+ argument to ``apply()``.
2102+
2103+ >>> series.apply(lambda x: x**2)
2104+ London 400
2105+ New York 441
2106+ Helsinki 144
2107+ dtype: int64
2108+
2109+ Define a custom function that needs additional positional
2110+ arguments and pass these additional arguments using the
2111+ ``args`` keyword.
2112+
2113+ >>> def subtract_custom_value(x, custom_value):
2114+ ... return x-custom_value
2115+
2116+ >>> series.apply(subtract_custom_value, args=(5,))
2117+ London 15
2118+ New York 16
2119+ Helsinki 7
2120+ dtype: int64
2121+
2122+ Define a custom function that takes keyword arguments
2123+ and pass these arguments to ``apply``.
2124+
2125+ >>> def add_custom_values(x, **kwargs):
2126+ ... for month in kwargs:
2127+ ... x+=kwargs[month]
2128+ ... return x
2129+
2130+ >>> series.apply(add_custom_values, june=30, july=20, august=25)
2131+ London 95
2132+ New York 96
2133+ Helsinki 87
2134+ dtype: int64
2135+
2136+ Use a function from the Numpy library.
2137+
2138+ >>> series.apply(np.log)
2139+ London 2.995732
2140+ New York 3.044522
2141+ Helsinki 2.484907
2142+ dtype: float64
2143+
2144+
20742145 """
20752146 if len (self ) == 0 :
20762147 return self ._constructor (dtype = self .dtype ,
0 commit comments