@@ -12299,7 +12299,6 @@ def std(
1229912299 ) -> Series | Any : ...
1230012300
1230112301 @deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "std" )
12302- @doc (make_doc ("std" , ndim = 2 ))
1230312302 def std (
1230412303 self ,
1230512304 axis : Axis | None = 0 ,
@@ -12308,6 +12307,82 @@ def std(
1230812307 numeric_only : bool = False ,
1230912308 ** kwargs ,
1231012309 ) -> Series | Any :
12310+ """
12311+ Return sample standard deviation over requested axis.
12312+
12313+ Normalized by N-1 by default. This can be changed using the ddof argument.
12314+
12315+ Parameters
12316+ ----------
12317+ axis : {index (0), columns (1)}
12318+ For `Series` this parameter is unused and defaults to 0.
12319+
12320+ .. warning::
12321+
12322+ The behavior of DataFrame.std with ``axis=None`` is deprecated,
12323+ in a future version this will reduce over both axes and return a scalar
12324+ To retain the old behavior, pass axis=0 (or do not pass axis).
12325+
12326+ skipna : bool, default True
12327+ Exclude NA/null values. If an entire row/column is NA, the result
12328+ will be NA.
12329+ ddof : int, default 1
12330+ Delta Degrees of Freedom. The divisor used in calculations is N - ddof,
12331+ where N represents the number of elements.
12332+ numeric_only : bool, default False
12333+ Include only float, int, boolean columns. Not implemented for Series.
12334+ **kwargs : dict
12335+ Additional keyword arguments to be passed to the function.
12336+
12337+ Returns
12338+ -------
12339+ Series or scalar
12340+ Standard deviation over requested axis.
12341+
12342+ See Also
12343+ --------
12344+ Series.std : Return standard deviation over Series values.
12345+ DataFrame.mean : Return the mean of the values over the requested axis.
12346+ DataFrame.mediam : Return the mediam of the values over the requested axis.
12347+ DataFrame.mode : Get the mode(s) of each element along the requested axis.
12348+ DataFrame.sum : Return the sum of the values over the requested axis.
12349+
12350+ Notes
12351+ -----
12352+ To have the same behaviour as `numpy.std`, use `ddof=0` (instead of the
12353+ default `ddof=1`)
12354+
12355+ Examples
12356+ --------
12357+ >>> df = pd.DataFrame(
12358+ ... {
12359+ ... "person_id": [0, 1, 2, 3],
12360+ ... "age": [21, 25, 62, 43],
12361+ ... "height": [1.61, 1.87, 1.49, 2.01],
12362+ ... }
12363+ ... ).set_index("person_id")
12364+ >>> df
12365+ age height
12366+ person_id
12367+ 0 21 1.61
12368+ 1 25 1.87
12369+ 2 62 1.49
12370+ 3 43 2.01
12371+
12372+ The standard deviation of the columns can be found as follows:
12373+
12374+ >>> df.std()
12375+ age 18.786076
12376+ height 0.237417
12377+ dtype: float64
12378+
12379+ Alternatively, `ddof=0` can be set to normalize by N instead of N-1:
12380+
12381+ >>> df.std(ddof=0)
12382+ age 16.269219
12383+ height 0.205609
12384+ dtype: float64
12385+ """
1231112386 result = super ().std (
1231212387 axis = axis , skipna = skipna , ddof = ddof , numeric_only = numeric_only , ** kwargs
1231312388 )
0 commit comments