@@ -12069,14 +12069,92 @@ def kurt(
1206912069 ) -> Series | Any : ...
1207012070
1207112071 @deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "kurt" )
12072- @doc (make_doc ("kurt" , ndim = 2 ))
1207312072 def kurt (
1207412073 self ,
1207512074 axis : Axis | None = 0 ,
1207612075 skipna : bool = True ,
1207712076 numeric_only : bool = False ,
1207812077 ** kwargs ,
1207912078 ) -> Series | Any :
12079+ """
12080+ Return unbiased kurtosis over requested axis.
12081+
12082+ Kurtosis obtained using Fisher's definition of
12083+ kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
12084+
12085+ Parameters
12086+ ----------
12087+ axis : {index (0), columns (1)}
12088+ Axis for the function to be applied on.
12089+ For `Series` this parameter is unused and defaults to 0.
12090+
12091+ For DataFrames, specifying ``axis=None`` will apply the aggregation
12092+ across both axes.
12093+
12094+ .. versionadded:: 2.0.0
12095+
12096+ skipna : bool, default True
12097+ Exclude NA/null values when computing the result.
12098+ numeric_only : bool, default False
12099+ Include only float, int, boolean columns.
12100+
12101+ **kwargs
12102+ Additional keyword arguments to be passed to the function.
12103+
12104+ Returns
12105+ -------
12106+ Series or scalar
12107+ Unbiased kurtosis over requested axis.
12108+
12109+ See Also
12110+ --------
12111+ Dataframe.kurtosis : Returns unbiased kurtosis over requested axis.
12112+
12113+ Examples
12114+ --------
12115+ >>> s = pd.Series([1, 2, 2, 3], index=["cat", "dog", "dog", "mouse"])
12116+ >>> s
12117+ cat 1
12118+ dog 2
12119+ dog 2
12120+ mouse 3
12121+ dtype: int64
12122+ >>> s.kurt()
12123+ 1.5
12124+
12125+ With a DataFrame
12126+
12127+ >>> df = pd.DataFrame(
12128+ ... {"a": [1, 2, 2, 3], "b": [3, 4, 4, 4]},
12129+ ... index=["cat", "dog", "dog", "mouse"],
12130+ ... )
12131+ >>> df
12132+ a b
12133+ cat 1 3
12134+ dog 2 4
12135+ dog 2 4
12136+ mouse 3 4
12137+ >>> df.kurt()
12138+ a 1.5
12139+ b 4.0
12140+ dtype: float64
12141+
12142+ With axis=None
12143+
12144+ >>> df.kurt(axis=None).round(6)
12145+ -0.988693
12146+
12147+ Using axis=1
12148+
12149+ >>> df = pd.DataFrame(
12150+ ... {"a": [1, 2], "b": [3, 4], "c": [3, 4], "d": [1, 2]},
12151+ ... index=["cat", "dog"],
12152+ ... )
12153+ >>> df.kurt(axis=1)
12154+ cat -6.0
12155+ dog -6.0
12156+ dtype: float64
12157+ """
1208012158 result = super ().kurt (
1208112159 axis = axis , skipna = skipna , numeric_only = numeric_only , ** kwargs
1208212160 )
0 commit comments