@@ -652,9 +652,6 @@ def set_cartesian_axis_opts(args, axis, letter, orders):
652652
653653
654654def configure_cartesian_marginal_axes (args , fig , orders ):
655- if "histogram" in [args ["marginal_x" ], args ["marginal_y" ]]:
656- fig .layout ["barmode" ] = "overlay"
657-
658655 nrows = len (fig ._grid_ref )
659656 ncols = len (fig ._grid_ref [0 ])
660657
@@ -1497,17 +1494,14 @@ def build_dataframe(args, constructor):
14971494 # If data_frame is provided, we parse it into a narwhals DataFrame, while accounting
14981495 # for compatibility with pandas specific paths (e.g. Index/MultiIndex case).
14991496 if df_provided :
1500-
15011497 # data_frame is pandas-like DataFrame (pandas, modin.pandas, cudf)
15021498 if nw .dependencies .is_pandas_like_dataframe (args ["data_frame" ]):
1503-
15041499 columns = args ["data_frame" ].columns # This can be multi index
15051500 args ["data_frame" ] = nw .from_native (args ["data_frame" ], eager_only = True )
15061501 is_pd_like = True
15071502
15081503 # data_frame is pandas-like Series (pandas, modin.pandas, cudf)
15091504 elif nw .dependencies .is_pandas_like_series (args ["data_frame" ]):
1510-
15111505 args ["data_frame" ] = nw .from_native (
15121506 args ["data_frame" ], series_only = True
15131507 ).to_frame ()
@@ -1861,7 +1855,6 @@ def _check_dataframe_all_leaves(df: nw.DataFrame) -> None:
18611855 for row_idx , row in zip (
18621856 null_indices_mask , null_mask .filter (null_indices_mask ).iter_rows ()
18631857 ):
1864-
18651858 i = row .index (True )
18661859
18671860 if not all (row [i :]):
@@ -1990,7 +1983,6 @@ def process_dataframe_hierarchy(args):
19901983
19911984 if args ["color" ]:
19921985 if discrete_color :
1993-
19941986 discrete_aggs .append (args ["color" ])
19951987 agg_f [args ["color" ]] = nw .col (args ["color" ]).max ()
19961988 agg_f [f'{ args ["color" ]} { n_unique_token } ' ] = (
@@ -2045,7 +2037,6 @@ def post_agg(dframe: nw.LazyFrame, continuous_aggs, discrete_aggs) -> nw.LazyFra
20452037 ).drop ([f"{ col } { n_unique_token } " for col in discrete_aggs ])
20462038
20472039 for i , level in enumerate (path ):
2048-
20492040 dfg = (
20502041 df .group_by (path [i :], drop_null_keys = True )
20512042 .agg (** agg_f )
@@ -2422,7 +2413,6 @@ def get_groups_and_orders(args, grouper):
24222413 # figure out orders and what the single group name would be if there were one
24232414 single_group_name = []
24242415 unique_cache = dict ()
2425- grp_to_idx = dict ()
24262416
24272417 for i , col in enumerate (grouper ):
24282418 if col == one_group :
@@ -2440,27 +2430,28 @@ def get_groups_and_orders(args, grouper):
24402430 else :
24412431 orders [col ] = list (OrderedDict .fromkeys (list (orders [col ]) + uniques ))
24422432
2443- grp_to_idx = {k : i for i , k in enumerate (orders )}
2444-
24452433 if len (single_group_name ) == len (grouper ):
24462434 # we have a single group, so we can skip all group-by operations!
24472435 groups = {tuple (single_group_name ): df }
24482436 else :
2449- required_grouper = list ( orders . keys ())
2437+ required_grouper = [ group for group in orders if group in grouper ]
24502438 grouped = dict (df .group_by (required_grouper , drop_null_keys = True ).__iter__ ())
2451- sorted_group_names = list (grouped .keys ())
24522439
2453- for i , col in reversed (list (enumerate (required_grouper ))):
2454- sorted_group_names = sorted (
2455- sorted_group_names ,
2456- key = lambda g : orders [col ].index (g [i ]) if g [i ] in orders [col ] else - 1 ,
2457- )
2440+ sorted_group_names = sorted (
2441+ grouped .keys (),
2442+ key = lambda values : [
2443+ orders [group ].index (value ) if value in orders [group ] else - 1
2444+ for group , value in zip (required_grouper , values )
2445+ ],
2446+ )
24582447
24592448 # calculate the full group_names by inserting "" in the tuple index for one_group groups
24602449 full_sorted_group_names = [
24612450 tuple (
24622451 [
2463- "" if col == one_group else sub_group_names [grp_to_idx [col ]]
2452+ ""
2453+ if col == one_group
2454+ else sub_group_names [required_grouper .index (col )]
24642455 for col in grouper
24652456 ]
24662457 )
@@ -2487,6 +2478,10 @@ def make_figure(args, constructor, trace_patch=None, layout_patch=None):
24872478 constructor = go .Bar
24882479 args = process_dataframe_timeline (args )
24892480
2481+ # If we have marginal histograms, set barmode to "overlay"
2482+ if "histogram" in [args .get ("marginal_x" ), args .get ("marginal_y" )]:
2483+ layout_patch ["barmode" ] = "overlay"
2484+
24902485 trace_specs , grouped_mappings , sizeref , show_colorbar = infer_config (
24912486 args , constructor , trace_patch , layout_patch
24922487 )
@@ -2558,7 +2553,12 @@ def make_figure(args, constructor, trace_patch=None, layout_patch=None):
25582553 legendgroup = trace_name ,
25592554 showlegend = (trace_name != "" and trace_name not in trace_names ),
25602555 )
2561- if trace_spec .constructor in [go .Bar , go .Violin , go .Box , go .Histogram ]:
2556+
2557+ # Set 'offsetgroup' only in group barmode (or if no barmode is set)
2558+ barmode = layout_patch .get ("barmode" )
2559+ if trace_spec .constructor in [go .Bar , go .Box , go .Violin , go .Histogram ] and (
2560+ barmode == "group" or barmode is None
2561+ ):
25622562 trace .update (alignmentgroup = True , offsetgroup = trace_name )
25632563 trace_names .add (trace_name )
25642564
0 commit comments