|
| 1 | +import asyncio |
| 2 | +import os |
| 3 | +from typing import List |
| 4 | +import uuid |
| 5 | +from loguru import logger |
| 6 | +import shortuuid |
| 7 | +from gpt_server.model_worker.base.model_worker_base import ModelWorkerBase |
| 8 | +from gpt_server.model_worker.utils import pil_to_base64 |
| 9 | +import torch |
| 10 | +from diffusers import ZImagePipeline |
| 11 | +from gpt_server.utils import STATIC_DIR |
| 12 | + |
| 13 | +root_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) |
| 14 | + |
| 15 | +aspect_ratios = { |
| 16 | + "1:1": (1328, 1328), |
| 17 | + "16:9": (1664, 928), |
| 18 | + "9:16": (928, 1664), |
| 19 | + "4:3": (1472, 1140), |
| 20 | + "3:4": (1140, 1472), |
| 21 | + "3:2": (1584, 1056), |
| 22 | + "2:3": (1056, 1584), |
| 23 | +} |
| 24 | + |
| 25 | +width, height = aspect_ratios["16:9"] |
| 26 | +import re |
| 27 | + |
| 28 | + |
| 29 | +def contains_chinese(text): |
| 30 | + pattern = re.compile(r"[\u4e00-\u9fff]") |
| 31 | + return bool(pattern.search(text)) |
| 32 | + |
| 33 | + |
| 34 | +class ZImageWorker(ModelWorkerBase): |
| 35 | + def __init__( |
| 36 | + self, |
| 37 | + controller_addr: str, |
| 38 | + worker_addr: str, |
| 39 | + worker_id: str, |
| 40 | + model_path: str, |
| 41 | + model_names: List[str], |
| 42 | + limit_worker_concurrency: int, |
| 43 | + conv_template: str = None, # type: ignore |
| 44 | + ): |
| 45 | + super().__init__( |
| 46 | + controller_addr, |
| 47 | + worker_addr, |
| 48 | + worker_id, |
| 49 | + model_path, |
| 50 | + model_names, |
| 51 | + limit_worker_concurrency, |
| 52 | + conv_template, |
| 53 | + model_type="image", |
| 54 | + ) |
| 55 | + backend = os.environ["backend"] |
| 56 | + self.device = "cuda" if torch.cuda.is_available() else "cpu" |
| 57 | + self.pipe = ZImagePipeline.from_pretrained( |
| 58 | + model_path, torch_dtype=torch.bfloat16 |
| 59 | + ).to(self.device) |
| 60 | + |
| 61 | + logger.warning(f"模型:{model_names[0]}") |
| 62 | + |
| 63 | + async def get_image_output(self, params): |
| 64 | + self.call_ct += 1 |
| 65 | + prompt = params["prompt"] |
| 66 | + response_format = params.get("response_format", "b64_json") |
| 67 | + inputs = { |
| 68 | + "prompt": prompt, |
| 69 | + "negative_prompt": " ", |
| 70 | + "num_inference_steps": 8, |
| 71 | + "guidance_scale": 0.0, |
| 72 | + "generator": torch.Generator(self.device).manual_seed(42), |
| 73 | + } |
| 74 | + size = params.get("size", None) |
| 75 | + if size: |
| 76 | + size_split = size.split("x") |
| 77 | + width, height = int(size_split[0]), int(size_split[1]) |
| 78 | + inputs.update({"width": width, "height": height}) |
| 79 | + output = await asyncio.to_thread(self.pipe, **inputs) |
| 80 | + image = output.images[0] |
| 81 | + result = {} |
| 82 | + if response_format == "b64_json": |
| 83 | + # Convert PIL image to base64 |
| 84 | + base64 = pil_to_base64(pil_img=image) |
| 85 | + result = { |
| 86 | + "created": shortuuid.random(), |
| 87 | + "data": [{"b64_json": base64}], |
| 88 | + "usage": { |
| 89 | + "total_tokens": 0, |
| 90 | + "input_tokens": 0, |
| 91 | + "output_tokens": 0, |
| 92 | + "input_tokens_details": {"text_tokens": 0, "image_tokens": 0}, |
| 93 | + }, |
| 94 | + } |
| 95 | + return result |
| 96 | + elif response_format == "url": |
| 97 | + # 生成唯一文件名(避免冲突) |
| 98 | + file_name = str(uuid.uuid4()) + ".png" |
| 99 | + save_path = STATIC_DIR / file_name |
| 100 | + image.save(save_path, format="PNG") |
| 101 | + WORKER_PORT = os.environ["WORKER_PORT"] |
| 102 | + WORKER_HOST = os.environ["WORKER_HOST"] |
| 103 | + url = f"http://{WORKER_HOST}:{WORKER_PORT}/static/{file_name}" |
| 104 | + result = { |
| 105 | + "created": shortuuid.random(), |
| 106 | + "data": [{"url": url}], |
| 107 | + "usage": { |
| 108 | + "total_tokens": 0, |
| 109 | + "input_tokens": 0, |
| 110 | + "output_tokens": 0, |
| 111 | + "input_tokens_details": {"text_tokens": 0, "image_tokens": 0}, |
| 112 | + }, |
| 113 | + } |
| 114 | + return result |
| 115 | + |
| 116 | + |
| 117 | +if __name__ == "__main__": |
| 118 | + ZImageWorker.run() |
0 commit comments