@@ -37,20 +37,41 @@ versions (such as 2.0 or above) or Python versions.
3737## How to run
3838
3939To run GAM on a graph-based dataset (e.g., Cora, Citeseer, Pubmed), from this
40- folder run: `bash python3.7 -m gam.experiments.run_train_gam_graph
41- --data_path=<path_to_data>`
40+ folder run:
41+ ```
42+ $ python3.7 -m gam.experiments.run_train_gam_graph --data_path=<path_to_data>
43+ ```
4244
4345To run GAM on datasets without a graph (e.g., CIFAR10), from this folder run:
44- ` bash python3.7 -m gam.experiments.run_train_gam `
46+ ```
47+ $ python3.7 -m gam.experiments.run_train_gam
48+ ```
49+
50+ We recommend running on a GPU. With CUDA, this can be done by prepending
51+ ` CUDA_VISIBLE_DEVICES=<your-gpu-number> ` in front of the run script.
4552
4653For running on different datasets and configuration, please check the command
4754line flags in each of the run scripts.
4855
56+
57+ ## Visualizing the results.
58+
59+ To visualize the results in Tensorboard, use the following command, adjusting
60+ the dataset name accordingly:
61+ ```
62+ $ tensorboard --logdir=outputs/summaries/cora
63+ ```
64+
65+ An example of such visualization for Cora with GCN + GAM model is the following,
66+ showing the accuracy per co-train iteration for 3 runs with 3 different random seeds:
67+ ![ Tensorboard plot] ( gam_gcn_cora_multiple_seeds.png?raw=true " GCN + GAM on Cora ")
68+
69+
4970## References
5071
51- [[ 1] O. Stretcu, K. Viswanathan, D. Movshovitz-Attias, E.A. Platanios, A.
52- Tomkins, S. Ravi . "Graph Agreement Models for Semi-Supervised Learning." NeurIPS
53- 2019] ( https://nips.cc/Conferences/2019/Schedule?showEvent=13925 )
72+ [[ 1] O. Stretcu, K. Viswanathan, D. Movshovitz-Attias, E.A. Platanios, S. Ravi,
73+ A. Tomkins . "Graph Agreement Models for Semi-Supervised Learning." NeurIPS
74+ 2019] ( https://papers. nips.cc/paper/9076-graph-agreement-models-for-semi-supervised-learning )
5475
5576[[ 2] T. Bui, S. Ravi and V. Ramavajjala. "Neural Graph Learning: Training Neural
5677Networks Using Graphs." WSDM 2018] ( https://ai.google/research/pubs/pub46568.pdf )
0 commit comments