Skip to content

Commit 3b0732b

Browse files
committed
correct url for examples
1 parent 71e7984 commit 3b0732b

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

README.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -37,11 +37,11 @@ POT provides the following generic OT solvers (links to examples):
3737
POT provides the following Machine Learning related solvers:
3838

3939
* [Optimal transport for domain
40-
adaptation](https://pythonot.github.io/auto_examples/plot_otda_classes.html)
40+
adaptation](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_classes.html)
4141
with [group lasso regularization](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_classes.html), [Laplacian regularization](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_laplacian.html) [5] [30] and [semi
4242
supervised setting](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_semi_supervised.html).
43-
* [Linear OT mapping](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_linear_mapping.html) [14] and [Joint OT mapping estimation](https://pythonot.github.io/auto_examples/plot_otda_mapping.html) [8].
44-
* [Wasserstein Discriminant Analysis](https://pythonot.github.io/auto_examples/domain-adaptation/plot_WDA.html) [11] (requires autograd + pymanopt).
43+
* [Linear OT mapping](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_linear_mapping.html) [14] and [Joint OT mapping estimation](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_mapping.html) [8].
44+
* [Wasserstein Discriminant Analysis](https://pythonot.github.io/auto_examples/others/plot_WDA.html) [11] (requires autograd + pymanopt).
4545
* [JCPOT algorithm for multi-source domain adaptation with target shift](https://pythonot.github.io/auto_examples/domain-adaptation/plot_otda_jcpot.html) [27].
4646

4747
Some other examples are available in the [documentation](https://pythonot.github.io/auto_examples/index.html).

docs/source/readme.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ POT provides the following generic OT solvers (links to examples):
7070
POT provides the following Machine Learning related solvers:
7171

7272
- `Optimal transport for domain
73-
adaptation <auto_examples/plot_otda_classes.html>`__
73+
adaptation <auto_examples/domain-adaptation/plot_otda_classes.html>`__
7474
with `group lasso
7575
regularization <auto_examples/domain-adaptation/plot_otda_classes.html>`__,
7676
`Laplacian
@@ -80,10 +80,10 @@ POT provides the following Machine Learning related solvers:
8080
- `Linear OT
8181
mapping <auto_examples/domain-adaptation/plot_otda_linear_mapping.html>`__
8282
[14] and `Joint OT mapping
83-
estimation <auto_examples/plot_otda_mapping.html>`__
83+
estimation <auto_examples/domain-adaptation/plot_otda_mapping.html>`__
8484
[8].
8585
- `Wasserstein Discriminant
86-
Analysis <auto_examples/domain-adaptation/plot_WDA.html>`__
86+
Analysis <auto_examples/others/plot_WDA.html>`__
8787
[11] (requires autograd + pymanopt).
8888
- `JCPOT algorithm for multi-source domain adaptation with target
8989
shift <auto_examples/domain-adaptation/plot_otda_jcpot.html>`__

0 commit comments

Comments
 (0)