|
| 1 | +# POT: Python Optimal Transport |
| 2 | + |
| 3 | +import ot |
| 4 | +[](https: // badge.fury.io / py / POT) |
| 5 | +[](https: // anaconda.org / conda - forge / pot) |
| 6 | +[](https: // travis - ci.org / rflamary / POT) |
| 7 | +[](http: // pot.readthedocs.io / en / latest /?badge=latest) |
| 8 | +[](https: // pepy.tech / project / pot) |
| 9 | +[](https: // anaconda.org / conda - forge / pot) |
| 10 | +[](https: // github.com / rflamary / POT / blob / master / LICENSE) |
| 11 | + |
| 12 | + |
| 13 | +This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. |
| 14 | + |
| 15 | +It provides the following solvers: |
| 16 | + |
| 17 | +* OT Network Flow solver for the linear program / Earth Movers Distance[1]. |
| 18 | +* Entropic regularization OT solver with Sinkhorn Knopp Algorithm[2], stabilized version[9][10] and greedy Sinkhorn[22] with optional GPU implementation(requires cupy). |
| 19 | +* Sinkhorn divergence[23] and entropic regularization OT from empirical data. |
| 20 | +* Smooth optimal transport solvers(dual and semi - dual) for KL and squared L2 regularizations[17]. |
| 21 | +* Non regularized Wasserstein barycenters[16] with LP solver(only small scale). |
| 22 | +* Bregman projections for Wasserstein barycenter[3], convolutional barycenter[21] and unmixing[4]. |
| 23 | +* Optimal transport for domain adaptation with group lasso regularization[5] |
| 24 | +* Conditional gradient[6] and Generalized conditional gradient for regularized OT[7]. |
| 25 | +* Linear OT[14] and Joint OT matrix and mapping estimation[8]. |
| 26 | +* Wasserstein Discriminant Analysis[11](requires autograd + pymanopt). |
| 27 | +* Gromov - Wasserstein distances and barycenters([13] and regularized[12]) |
| 28 | +* Stochastic Optimization for Large - scale Optimal Transport(semi - dual problem[18] and dual problem[19]) |
| 29 | +* Non regularized free support Wasserstein barycenters[20]. |
| 30 | +* Unbalanced OT with KL relaxation distance and barycenter[10, 25]. |
| 31 | +* Screening Sinkhorn Algorithm for OT[26]. |
| 32 | +* JCPOT algorithm for multi - source domain adaptation with target shift[27]. |
| 33 | +* Partial Wasserstein and Gromov - Wasserstein(exact[29] and entropic[3] formulations). |
| 34 | + |
| 35 | +Some demonstrations(both in Python and Jupyter Notebook format) are available in the examples folder. |
| 36 | + |
| 37 | +#### Using and citing the toolbox |
| 38 | + |
| 39 | +If you use this toolbox in your research and find it useful, please cite POT using the following bibtex reference: |
| 40 | +``` |
| 41 | +
|
| 42 | +
|
| 43 | +@misc{flamary2017pot, |
| 44 | + title = {POT Python Optimal Transport library}, |
| 45 | + author = {Flamary, R{'e}mi and Courty, Nicolas}, |
| 46 | + url = {https: // github.com / rflamary / POT}, |
| 47 | + year = {2017} |
| 48 | + } |
| 49 | +``` |
| 50 | + |
| 51 | +## Installation |
| 52 | + |
| 53 | +The library has been tested on Linux, MacOSX and Windows. It requires a C + + compiler for building / installing the EMD solver and relies on the following Python modules: |
| 54 | + |
| 55 | +- Numpy ( >= 1.11) |
| 56 | +- Scipy ( >= 1.0) |
| 57 | +- Cython ( >= 0.23) |
| 58 | +- Matplotlib ( >= 1.5) |
| 59 | + |
| 60 | +#### Pip installation |
| 61 | + |
| 62 | +Note that due to a limitation of pip, `cython` and `numpy` need to be installed |
| 63 | +prior to installing POT. This can be done easily with |
| 64 | +``` |
| 65 | +pip install numpy cython |
| 66 | +``` |
| 67 | + |
| 68 | +You can install the toolbox through PyPI with: |
| 69 | +``` |
| 70 | +pip install POT |
| 71 | +``` |
| 72 | +or get the very latest version by downloading it and then running: |
| 73 | +``` |
| 74 | +python setup.py install - -user # for user install (no root) |
| 75 | +``` |
| 76 | + |
| 77 | + |
| 78 | +#### Anaconda installation with conda-forge |
| 79 | + |
| 80 | +If you use the Anaconda python distribution, POT is available in [conda - forge](https: // conda - forge.org). To install it and the required dependencies: |
| 81 | +``` |
| 82 | +conda install - c conda - forge pot |
| 83 | +``` |
| 84 | + |
| 85 | +#### Post installation check |
| 86 | +After a correct installation, you should be able to import the module without errors: |
| 87 | +```python |
| 88 | +``` |
| 89 | +Note that for easier access the module is name ot instead of pot. |
| 90 | + |
| 91 | + |
| 92 | +### Dependencies |
| 93 | + |
| 94 | +Some sub - modules require additional dependences which are discussed below |
| 95 | + |
| 96 | +* **ot.dr ** (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with: |
| 97 | +``` |
| 98 | +pip install pymanopt autograd |
| 99 | +``` |
| 100 | +* **ot.gpu ** (GPU accelerated OT) depends on cupy that have to be installed following instructions on[this page](https: // docs - cupy.chainer.org / en / stable / install.html). |
| 101 | + |
| 102 | + |
| 103 | +obviously you need CUDA installed and a compatible GPU. |
| 104 | + |
| 105 | +## Examples |
| 106 | + |
| 107 | +### Short examples |
| 108 | + |
| 109 | +* Import the toolbox |
| 110 | +```python |
| 111 | +``` |
| 112 | +* Compute Wasserstein distances |
| 113 | +```python |
| 114 | +# a,b are 1D histograms (sum to 1 and positive) |
| 115 | +# M is the ground cost matrix |
| 116 | +Wd = ot.emd2(a, b, M) # exact linear program |
| 117 | +Wd_reg = ot.sinkhorn2(a, b, M, reg) # entropic regularized OT |
| 118 | +# if b is a matrix compute all distances to a and return a vector |
| 119 | +``` |
| 120 | +* Compute OT matrix |
| 121 | +```python |
| 122 | +# a,b are 1D histograms (sum to 1 and positive) |
| 123 | +# M is the ground cost matrix |
| 124 | +T = ot.emd(a, b, M) # exact linear program |
| 125 | +T_reg = ot.sinkhorn(a, b, M, reg) # entropic regularized OT |
| 126 | +``` |
| 127 | +* Compute Wasserstein barycenter |
| 128 | +```python |
| 129 | +# A is a n*d matrix containing d 1D histograms |
| 130 | +# M is the ground cost matrix |
| 131 | +ba = ot.barycenter(A, M, reg) # reg is regularization parameter |
| 132 | +``` |
| 133 | + |
| 134 | + |
| 135 | +### Examples and Notebooks |
| 136 | + |
| 137 | +The examples folder contain several examples and use case for the library. The full documentation is available on [Readthedocs](http: // pot.readthedocs.io / ). |
| 138 | + |
| 139 | + |
| 140 | +Here is a list of the Python notebooks available [here](https: // github.com / rflamary / POT / blob / master / notebooks / ) if you want a quick look: |
| 141 | + |
| 142 | +* [1D optimal transport](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_1D.ipynb) |
| 143 | +* [OT Ground Loss](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_L1_vs_L2.ipynb) |
| 144 | +* [Multiple EMD computation](https: // github.com / rflamary / POT / blob / master / notebooks / plot_compute_emd.ipynb) |
| 145 | +* [2D optimal transport on empirical distributions](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_2D_samples.ipynb) |
| 146 | +* [1D Wasserstein barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_barycenter_1D.ipynb) |
| 147 | +* [OT with user provided regularization](https: // github.com / rflamary / POT / blob / master / notebooks / plot_optim_OTreg.ipynb) |
| 148 | +* [Domain adaptation with optimal transport](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_d2.ipynb) |
| 149 | +* [Color transfer in images](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_color_images.ipynb) |
| 150 | +* [OT mapping estimation for domain adaptation](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_mapping.ipynb) |
| 151 | +* [OT mapping estimation for color transfer in images](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_mapping_colors_images.ipynb) |
| 152 | +* [Wasserstein Discriminant Analysis](https: // github.com / rflamary / POT / blob / master / notebooks / plot_WDA.ipynb) |
| 153 | +* [Gromov Wasserstein](https: // github.com / rflamary / POT / blob / master / notebooks / plot_gromov.ipynb) |
| 154 | +* [Gromov Wasserstein Barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_gromov_barycenter.ipynb) |
| 155 | +* [Fused Gromov Wasserstein](https: // github.com / rflamary / POT / blob / master / notebooks / plot_fgw.ipynb) |
| 156 | +* [Fused Gromov Wasserstein Barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_barycenter_fgw.ipynb) |
| 157 | + |
| 158 | + |
| 159 | +You can also see the notebooks with [Jupyter nbviewer](https: // nbviewer.jupyter.org / github / rflamary / POT / tree / master / notebooks / ). |
| 160 | + |
| 161 | +## Acknowledgements |
| 162 | + |
| 163 | +This toolbox has been created and is maintained by |
| 164 | + |
| 165 | +* [Rémi Flamary](http: // remi.flamary.com / ) |
| 166 | +* [Nicolas Courty](http: // people.irisa.fr / Nicolas.Courty / ) |
| 167 | + |
| 168 | +The contributors to this library are |
| 169 | + |
| 170 | +* [Alexandre Gramfort](http: // alexandre.gramfort.net / ) |
| 171 | +* [Laetitia Chapel](http: // people.irisa.fr / Laetitia.Chapel / ) |
| 172 | +* [Michael Perrot](http: // perso.univ - st - etienne.fr / pem82055 / ) (Mapping estimation) |
| 173 | +* [Léo Gautheron](https: // github.com / aje)(GPU implementation) |
| 174 | +* [Nathalie Gayraud](https: // www.linkedin.com / in / nathalie - t - h - gayraud /?ppe=1) |
| 175 | +* [Stanislas Chambon](https: // slasnista.github.io / ) |
| 176 | +* [Antoine Rolet](https: // arolet.github.io / ) |
| 177 | +* Erwan Vautier(Gromov - Wasserstein) |
| 178 | +* [Kilian Fatras](https: // kilianfatras.github.io / ) |
| 179 | +* [Alain Rakotomamonjy](https: // sites.google.com / site / alainrakotomamonjy / home) |
| 180 | +* [Vayer Titouan](https: // tvayer.github.io / ) |
| 181 | +* [Hicham Janati](https: // hichamjanati.github.io / ) (Unbalanced OT) |
| 182 | +* [Romain Tavenard](https: // rtavenar.github.io / ) (1d Wasserstein) |
| 183 | +* [Mokhtar Z. Alaya](http: // mzalaya.github.io / ) (Screenkhorn) |
| 184 | + |
| 185 | +This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code(in various languages): |
| 186 | + |
| 187 | +* [Gabriel Peyré](http: // gpeyre.github.io / ) (Wasserstein Barycenters in Matlab) |
| 188 | +* [Nicolas Bonneel](http: // liris.cnrs.fr / ~nbonneel /) (C++ code for EMD) |
| 189 | +* [Marco Cuturi](http: // marcocuturi.net / ) (Sinkhorn Knopp in Matlab/Cuda) |
| 190 | + |
| 191 | + |
| 192 | +## Contributions and code of conduct |
| 193 | + |
| 194 | +Every contribution is welcome and should respect the[contribution guidelines](CONTRIBUTING.md). Each member of the project is expected to follow the[code of conduct](CODE_OF_CONDUCT.md). |
| 195 | + |
| 196 | +## Support |
| 197 | + |
| 198 | +You can ask questions and join the development discussion: |
| 199 | + |
| 200 | +* On the[POT Slack channel](https: // pot - toolbox.slack.com) |
| 201 | +* On the POT [mailing list](https: // mail.python.org / mm3 / mailman3 / lists / pot.python.org / ) |
| 202 | + |
| 203 | + |
| 204 | +You can also post bug reports and feature requests in Github issues. Make sure to read our[guidelines](CONTRIBUTING.md) first. |
| 205 | + |
| 206 | +## References |
| 207 | + |
| 208 | +[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). [Displacement interpolation using Lagrangian mass transport](https: // people.csail.mit.edu / sparis / publi / 2011 / sigasia / Bonneel_11_Displacement_Interpolation.pdf). In ACM Transactions on Graphics(TOG)(Vol. 30, No. 6, p. 158). ACM. |
| 209 | + |
| 210 | +[2] Cuturi, M. (2013). [Sinkhorn distances: Lightspeed computation of optimal transport](https: // arxiv.org / pdf / 1306.0895.pdf). In Advances in Neural Information Processing Systems(pp. 2292 - 2300). |
| 211 | + |
| 212 | +[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). [Iterative Bregman projections for regularized transportation problems](https: // arxiv.org / pdf / 1412.5154.pdf). SIAM Journal on Scientific Computing, 37(2), A1111 - A1138. |
| 213 | + |
| 214 | +[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, [Supervised planetary unmixing with optimal transport](https: // hal.archives - ouvertes.fr / hal - 01377236 / document), Whorkshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing(WHISPERS), 2016. |
| 215 | + |
| 216 | +[5] N. Courty |
| 217 | +R. Flamary |
| 218 | +D. Tuia |
| 219 | +A. Rakotomamonjy, [Optimal Transport for Domain Adaptation](https: // arxiv.org / pdf / 1507.00504.pdf), in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PP, no.99, pp.1 - 1 |
| 220 | + |
| 221 | +[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). [Regularized discrete optimal transport](https: // arxiv.org / pdf / 1307.5551.pdf). SIAM Journal on Imaging Sciences, 7(3), 1853 - 1882. |
| 222 | + |
| 223 | +[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). [Generalized conditional gradient: analysis of convergence and applications](https: // arxiv.org / pdf / 1510.06567.pdf). arXiv preprint arXiv: 1510.06567. |
| 224 | + |
| 225 | +[8] M. Perrot, N. Courty, R. Flamary, A. Habrard(2016), [Mapping estimation for discrete optimal transport](http: // remi.flamary.com / biblio / perrot2016mapping.pdf), Neural Information Processing Systems(NIPS). |
| 226 | + |
| 227 | +[9] Schmitzer, B. (2016). [Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems](https: // arxiv.org / pdf / 1610.06519.pdf). arXiv preprint arXiv: 1610.06519. |
| 228 | + |
| 229 | +[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). [Scaling algorithms for unbalanced transport problems](https: // arxiv.org / pdf / 1607.05816.pdf). arXiv preprint arXiv: 1607.05816. |
| 230 | + |
| 231 | +[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). [Wasserstein Discriminant Analysis](https: // arxiv.org / pdf / 1608.08063.pdf). arXiv preprint arXiv: 1608.08063. |
| 232 | + |
| 233 | +[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon(2016), [Gromov - Wasserstein averaging of kernel and distance matrices](http: // proceedings.mlr.press / v48 / peyre16.html) International Conference on Machine Learning(ICML). |
| 234 | + |
| 235 | +[13] Mémoli, Facundo(2011). [Gromov–Wasserstein distances and the metric approach to object matching](https: // media.adelaide.edu.au / acvt / Publications / 2011 / 2011 - Gromov % E2 % 80 % 93Wasserstein % 20Distances % 20and % 20the % 20Metric % 20Approach % 20to % 20Object % 20Matching.pdf). Foundations of computational mathematics 11.4: 417 - 487. |
| 236 | + |
| 237 | +[14] Knott, M. and Smith, C. S. (1984).[On the optimal mapping of distributions](https: // link.springer.com / article / 10.1007 / BF00934745), Journal of Optimization Theory and Applications Vol 43. |
| 238 | + |
| 239 | +[15] Peyré, G., & Cuturi, M. (2018). [Computational Optimal Transport](https: // arxiv.org / pdf / 1803.00567.pdf) . |
| 240 | + |
| 241 | +[16] Agueh, M., & Carlier, G. (2011). [Barycenters in the Wasserstein space](https: // hal.archives - ouvertes.fr / hal - 00637399 / document). SIAM Journal on Mathematical Analysis, 43(2), 904 - 924. |
| 242 | + |
| 243 | +[17] Blondel, M., Seguy, V., & Rolet, A. (2018). [Smooth and Sparse Optimal Transport](https: // arxiv.org / abs / 1710.06276). Proceedings of the Twenty - First International Conference on Artificial Intelligence and Statistics(AISTATS). |
| 244 | + |
| 245 | +[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016)[Stochastic Optimization for Large - scale Optimal Transport](https: // arxiv.org / abs / 1605.08527). Advances in Neural Information Processing Systems(2016). |
| 246 | + |
| 247 | +[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A. & Blondel, M. [Large - scale Optimal Transport and Mapping Estimation](https: // arxiv.org / pdf / 1711.02283.pdf). International Conference on Learning Representation(2018) |
| 248 | + |
| 249 | +[20] Cuturi, M. and Doucet, A. (2014)[Fast Computation of Wasserstein Barycenters](http: // proceedings.mlr.press / v32 / cuturi14.html). International Conference in Machine Learning |
| 250 | + |
| 251 | +[21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). [Convolutional wasserstein distances: Efficient optimal transportation on geometric domains](https: // dl.acm.org / citation.cfm?id=2766963). ACM Transactions on Graphics(TOG), 34(4), 66. |
| 252 | + |
| 253 | +[22] J. Altschuler, J.Weed, P. Rigollet, (2017)[Near - linear time approximation algorithms for optimal transport via Sinkhorn iteration](https: // papers.nips.cc / paper / 6792 - near - linear - time - approximation - algorithms - for-optimal - transport - via - sinkhorn - iteration.pdf), Advances in Neural Information Processing Systems(NIPS) 31 |
| 254 | + |
| 255 | +[23] Aude, G., Peyré, G., Cuturi, M., [Learning Generative Models with Sinkhorn Divergences](https: // arxiv.org / abs / 1706.00292), Proceedings of the Twenty - First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018 |
| 256 | + |
| 257 | +[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). [Optimal Transport for structured data with application on graphs](http: // proceedings.mlr.press / v97 / titouan19a.html) Proceedings of the 36th International Conference on Machine Learning(ICML). |
| 258 | + |
| 259 | +[25] Frogner C., Zhang C., Mobahi H., Araya - Polo M., Poggio T. (2015). [Learning with a Wasserstein Loss](http: // cbcl.mit.edu / wasserstein / ) Advances in Neural Information Processing Systems (NIPS). |
| 260 | + |
| 261 | +[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019). [Screening Sinkhorn Algorithm for Regularized Optimal Transport](https: // papers.nips.cc / paper / 9386 - screening - sinkhorn - algorithm - for-regularized - optimal - transport), Advances in Neural Information Processing Systems 33 (NeurIPS). |
| 262 | + |
| 263 | +[27] Redko I., Courty N., Flamary R., Tuia D. (2019). [Optimal Transport for Multi - source Domain Adaptation under Target Shift](http: // proceedings.mlr.press / v89 / redko19a.html), Proceedings of the Twenty - Second International Conference on Artificial Intelligence and Statistics(AISTATS) 22, 2019. |
| 264 | + |
| 265 | +[28] Caffarelli, L. A., McCann, R. J. (2020). [Free boundaries in optimal transport and Monge - Ampere obstacle problems](http: // www.math.toronto.edu / ~mccann / papers / annals2010.pdf), Annals of mathematics, 673 - 730. |
| 266 | + |
| 267 | +[29] Chapel, L., Alaya, M., Gasso, G. (2019). [Partial Gromov - Wasserstein with Applications on Positive - Unlabeled Learning](https: // arxiv.org / abs / 2002.08276), arXiv preprint arXiv: 2002.08276. |
0 commit comments