Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 70 additions & 0 deletions scripts/convert_z_image_controlnet_to_diffusers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import argparse
from contextlib import nullcontext

import safetensors.torch
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download

from diffusers.models.controlnets.controlnet_z_image import ZImageControlNetModel
from diffusers.utils.import_utils import is_accelerate_available


"""
python scripts/convert_z_image_controlnet_to_diffusers.py \
--original_controlnet_repo_id "alibaba-pai/Z-Image-Turbo-Fun-Controlnet-Union" \
--filename "Z-Image-Turbo-Fun-Controlnet-Union.safetensors"
--output_path "z-image-controlnet-hf/"
"""


CTX = init_empty_weights if is_accelerate_available else nullcontext

parser = argparse.ArgumentParser()
parser.add_argument("--original_controlnet_repo_id", default=None, type=str)
parser.add_argument("--filename", default="Z-Image-Turbo-Fun-Controlnet-Union.safetensors", type=str)
parser.add_argument("--checkpoint_path", default=None, type=str)
parser.add_argument("--output_path", type=str)

args = parser.parse_args()


def load_original_checkpoint(args):
if args.original_controlnet_repo_id is not None:
ckpt_path = hf_hub_download(repo_id=args.original_controlnet_repo_id, filename=args.filename)
elif args.checkpoint_path is not None:
ckpt_path = args.checkpoint_path
else:
raise ValueError(" please provide either `original_controlnet_repo_id` or a local `checkpoint_path`")

original_state_dict = safetensors.torch.load_file(ckpt_path)
return original_state_dict


def convert_z_image_controlnet_checkpoint_to_diffusers(original_state_dict):
converted_state_dict = {}

converted_state_dict.update(original_state_dict)

return converted_state_dict


def main(args):
original_ckpt = load_original_checkpoint(args)

control_in_dim = 16
control_layers_places = [0, 5, 10, 15, 20, 25]

converted_controlnet_state_dict = convert_z_image_controlnet_checkpoint_to_diffusers(original_ckpt)

controlnet = ZImageControlNetModel(
control_layers_places=control_layers_places,
control_in_dim=control_in_dim,
).to(torch.bfloat16)
controlnet.load_state_dict(converted_controlnet_state_dict)
print("Saving Z-Image ControlNet in Diffusers format")
controlnet.save_pretrained(args.output_path)


if __name__ == "__main__":
main(args)
6 changes: 6 additions & 0 deletions src/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -277,6 +277,8 @@
"WanTransformer3DModel",
"WanVACETransformer3DModel",
"ZImageTransformer2DModel",
"ZImageControlTransformer2DModel",
"ZImageControlNetModel",
"attention_backend",
]
)
Expand Down Expand Up @@ -661,6 +663,7 @@
"WuerstchenDecoderPipeline",
"WuerstchenPriorPipeline",
"ZImagePipeline",
"ZImageControlNetPipeline",
]
)

Expand Down Expand Up @@ -1003,6 +1006,8 @@
WanAnimateTransformer3DModel,
WanTransformer3DModel,
WanVACETransformer3DModel,
ZImageControlNetModel,
ZImageControlTransformer2DModel,
ZImageTransformer2DModel,
attention_backend,
)
Expand Down Expand Up @@ -1356,6 +1361,7 @@
WuerstchenCombinedPipeline,
WuerstchenDecoderPipeline,
WuerstchenPriorPipeline,
ZImageControlNetPipeline,
ZImagePipeline,
)

Expand Down
1 change: 1 addition & 0 deletions src/diffusers/loaders/peft.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@
"QwenImageTransformer2DModel": lambda model_cls, weights: weights,
"Flux2Transformer2DModel": lambda model_cls, weights: weights,
"ZImageTransformer2DModel": lambda model_cls, weights: weights,
"ZImageControlTransformer2DModel": lambda model_cls, weights: weights,
}


Expand Down
4 changes: 4 additions & 0 deletions src/diffusers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@
_import_structure["controlnets.controlnet_sparsectrl"] = ["SparseControlNetModel"]
_import_structure["controlnets.controlnet_union"] = ["ControlNetUnionModel"]
_import_structure["controlnets.controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"]
_import_structure["controlnets.controlnet_z_image"] = ["ZImageControlNetModel"]
_import_structure["controlnets.multicontrolnet"] = ["MultiControlNetModel"]
_import_structure["controlnets.multicontrolnet_union"] = ["MultiControlNetUnionModel"]
_import_structure["embeddings"] = ["ImageProjection"]
Expand Down Expand Up @@ -116,6 +117,7 @@
_import_structure["transformers.transformer_wan_animate"] = ["WanAnimateTransformer3DModel"]
_import_structure["transformers.transformer_wan_vace"] = ["WanVACETransformer3DModel"]
_import_structure["transformers.transformer_z_image"] = ["ZImageTransformer2DModel"]
_import_structure["transformers.transformer_z_image_control"] = ["ZImageControlTransformer2DModel"]
_import_structure["unets.unet_1d"] = ["UNet1DModel"]
_import_structure["unets.unet_2d"] = ["UNet2DModel"]
_import_structure["unets.unet_2d_condition"] = ["UNet2DConditionModel"]
Expand Down Expand Up @@ -180,6 +182,7 @@
SD3MultiControlNetModel,
SparseControlNetModel,
UNetControlNetXSModel,
ZImageControlNetModel,
)
from .embeddings import ImageProjection
from .modeling_utils import ModelMixin
Expand Down Expand Up @@ -229,6 +232,7 @@
WanAnimateTransformer3DModel,
WanTransformer3DModel,
WanVACETransformer3DModel,
ZImageControlTransformer2DModel,
ZImageTransformer2DModel,
)
from .unets import (
Expand Down
1 change: 1 addition & 0 deletions src/diffusers/models/controlnets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
)
from .controlnet_union import ControlNetUnionModel
from .controlnet_xs import ControlNetXSAdapter, ControlNetXSOutput, UNetControlNetXSModel
from .controlnet_z_image import ZImageControlNetModel
from .multicontrolnet import MultiControlNetModel
from .multicontrolnet_union import MultiControlNetUnionModel

Expand Down
123 changes: 123 additions & 0 deletions src/diffusers/models/controlnets/controlnet_z_image.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ..controlnets.controlnet import zero_module
from ..modeling_utils import ModelMixin
from ..transformers.transformer_z_image import (
ZImageTransformerBlock,
)


class ZImageControlTransformerBlock(ZImageTransformerBlock):
def __init__(
self,
layer_id: int,
dim: int,
n_heads: int,
n_kv_heads: int,
norm_eps: float,
qk_norm: bool,
modulation=True,
block_id=0,
):
super().__init__(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation)
self.block_id = block_id
if block_id == 0:
self.before_proj = zero_module(nn.Linear(self.dim, self.dim))
self.after_proj = zero_module(nn.Linear(self.dim, self.dim))

def forward(
self,
c: torch.Tensor,
x: torch.Tensor,
attn_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
):
if self.block_id == 0:
c = self.before_proj(c) + x
all_c = []
else:
all_c = list(torch.unbind(c))
c = all_c.pop(-1)

c = super().forward(c, attn_mask, freqs_cis, adaln_input)
c_skip = self.after_proj(c)
all_c += [c_skip, c]
c = torch.stack(all_c)
return c


class ZImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True

@register_to_config
def __init__(
self,
all_patch_size=(2,),
all_f_patch_size=(1,),
dim=3840,
n_refiner_layers=2,
n_heads=30,
n_kv_heads=30,
norm_eps=1e-5,
qk_norm=True,
control_layers_places: List[int] = None,
control_in_dim=None,
):
super().__init__()
self.control_layers_places = control_layers_places
self.control_in_dim = control_in_dim

assert 0 in self.control_layers_places

# control blocks
self.control_layers = nn.ModuleList(
[
ZImageControlTransformerBlock(i, dim, n_heads, n_kv_heads, norm_eps, qk_norm, block_id=i)
for i in self.control_layers_places
]
)

# control patch embeddings
all_x_embedder = {}
for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)):
x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * self.control_in_dim, dim, bias=True)
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder

self.control_all_x_embedder = nn.ModuleDict(all_x_embedder)
self.control_noise_refiner = nn.ModuleList(
[
ZImageTransformerBlock(
1000 + layer_id,
dim,
n_heads,
n_kv_heads,
norm_eps,
qk_norm,
modulation=True,
)
for layer_id in range(n_refiner_layers)
]
)

def forward(self):
pass
1 change: 1 addition & 0 deletions src/diffusers/models/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,3 +48,4 @@
from .transformer_wan_animate import WanAnimateTransformer3DModel
from .transformer_wan_vace import WanVACETransformer3DModel
from .transformer_z_image import ZImageTransformer2DModel
from .transformer_z_image_control import ZImageControlTransformer2DModel
Loading