This is implementation of Bayesian HMM (https://www.aclweb.org/anthology/D10-1056/) using c++.
- C++ 11
- CMake
mkdir src/build
cd src/build
cmake -DUSE_PARALLEL_MODE=TRUE -DCMAKE_BUILD_TYPE=Release ..
make
make install
You can get python bindings if you want.
git submodule update --init --recursive
mkdir src/build
cd src/build
cmake -DUSE_PARALLEL_MODE=TRUE -DBUILD_PYTHON_MODULE=TRUE -DPYTHON_EXECUTABLE=`which python` -DCMAKE_BUILD_TYPE=Release ..
make
make install
./bin/bhmm --file data/train.txt
This is usage of python binding.
python bin/main.py --file data/train.txt
Example of "Alice in Wonderland".
- Hyperparameters
- epoch: 1000 (but we need bigger number for convergence.)
- others: default parameters
- add save function
- add hyperparamer inference function
- extend to semi-supervised manner
MIT
