Skip to content

tomoris/BayesianHMM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unsupervised POS induction using Bayesian HMM

This is implementation of Bayesian HMM (https://www.aclweb.org/anthology/D10-1056/) using c++.

Requirement

  • C++ 11
  • CMake

Build

mkdir src/build
cd src/build
cmake -DUSE_PARALLEL_MODE=TRUE -DCMAKE_BUILD_TYPE=Release ..
make
make install

You can get python bindings if you want.

git submodule update --init --recursive
mkdir src/build
cd src/build
cmake -DUSE_PARALLEL_MODE=TRUE -DBUILD_PYTHON_MODULE=TRUE -DPYTHON_EXECUTABLE=`which python` -DCMAKE_BUILD_TYPE=Release ..
make
make install

Usage

./bin/bhmm --file data/train.txt

This is usage of python binding.

python bin/main.py --file data/train.txt

Example

Example of "Alice in Wonderland".

  • Hyperparameters
    • epoch: 1000 (but we need bigger number for convergence.)
    • others: default parameters

heatmap

TODO

  • add save function
  • add hyperparamer inference function
  • extend to semi-supervised manner

License

MIT

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published